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Formal methods – why? 
Example: auto-pilot 

Problem: 
 Design a module in aircraft auto-pilot that avoids 

collision with other planes. 

One possible design solution: 

 When distance is 1km, give warning to other plane 
and notify pilot.  When distance is 300m, and no 
changes in the course of other plane, go up.  



3 

Problem with solution 

 Both planes have the same software.  Both 
go up... 



 Some famous bugs 

 several NASA space missions lost,  

 Intel floating point processor, etc. 

 Hard to predict all behaviours! 

 US aircraft went to southern hemisphere and … 
flipped when crossing the equator 

 Software written for US F-16  

 accidents when reused in Israeli aircraft flown over the 
Dead Sea  

 (altitude < sea level) 
4 

This happens in real software! 



5 

 Moore’s Law:  

 The performance of microprocessors  

 doubles every 18 months 
 

 Proebsting’s law: Compiler technology doubles the performance 
of typical programs every 18 years 

 Gilder’s Telecosom Law: 3x bandwidth/year for 25 more years 

 

 

 

 

 
 

 

Design costs tend to grow faster than the size of the system 

Why FMs? (I)  
Increasing complexity/costs of system development 

 Today:  

 10 Gbps per channel 

 4 channels per fiber: 40 Gbps 

 32 fibers/bundle = 1.2 Tbps/bundle 

 In lab 3 Tbps/fiber (400 x WDM) 

 In theory 25 Tbps per fiber 

 1 Tbps = USA 1996 WAN bisection bandwidth 

 

 

1 fiber = 25 Tbps 
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Why FMs? (II) 
Increasing dependability of systems 

 Everything important depends on computers:  
 stir by wire aircrafts  
 banking 
 stock market  
 manufacturing workflow, … 

 Quality concerns due to the increasing  
 functionality 
 security 
 mobility  
 new business processes, … Ariadne 5 accident 

The launch failure brought the high risks associated with complex computing systems to the attention of 
the general public, politicians, and executives, resulting in increased support for research on ensuring the 
reliability of safety-critical systems. The subsequent automated analysis of the Ariane code was the first 
example of large-scale static code analysis by abstract interpretation 

http://en.wikipedia.org/wiki/Safety-critical_system
http://en.wikipedia.org/wiki/Safety-critical_system
http://en.wikipedia.org/wiki/Safety-critical_system
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Abstract_interpretation
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Implications of complexity & dependability growth 

 Quality dilemma: drop quality for more features  
 Testing and verification are the bottlenecks of sw processes 
 Typically > 50% of development costs are spent on error 

detection/diagnosis/repairment 
 

 FM research challenge: find efficient methods for sw synthesis, 
test and verification 
 

 Trends: combine FM and testing in the sw process 
FMs for isolated tasks  integrating FMs into full life cycle 

 Current practice: MDD (Model Driven Development)  
 
  Experts in FM are increasingly needed in high-tech industry,  
 specially in cyber-physical systems (robotics, smart energy grids, 

smart houses, mobile applications etc). 
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Test & Verification 

 Testing 
 Standard definition: dynamic execution / simulation of a system 
 Present view: tests have to be integrated in development process  
 Extreme view: testing should “drive” the development process 

 
 Verification 

 Standard definition: static checking, symbolic execution. 

 In hw design community: verification means also testing 

 
 Our view: Testing  Verification 

 Testing is partial exploration method (not all executions are 
covered) 

 Verification is complete method but more costly than testing 
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Verification: process and actors 

$$$ 
SPEC Informal 

requirements 

Code 

Bug 
report 

Steps covered with FMs 

Design 



Closer look on Model-Based Testing (MBT) 
process 

 Goal: Check if real system conforms 
with requirements specification. 

 Advantages/disadvantages 
+ model hides irrelevant details of 

implementation; 

+ automatic generation and execution of 
tests; 

+ systematic coverage of requirements 

+ relevant in regression testing  

- modeling overhead! 

 

10 
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Formal Methods in general 

 FMs deal with formal notations – state, type, data refinement,... 

 Formal notions have rigorous semantics 

 Emphasizes static / symbolic reasoning about abstractions 

    (standard definition of verification falls into this category) 

 Too narrow view on FMs in digital design – covers only 
equivalence and model checking, but there is much more 

 

 FMs are not esoteric, e.g.  compilation in a broad sense is a FM 

     (high-level description is translated into low-level description). 
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Focus of this course 

 
 Tool-supported reasoning about the 

correctness of programs and systems. 
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Formal Methods: Classification 

Z 
ASM   

Some profiles of 
UML?? 

Formal 
Specification 

         SDL 
 
Synchronous  
Languages 
 

 Compiler tech. 

  Model checking 

Theorem Proving 
Static analysis  

       Equivalence  
       Checking 
    SAT 

Formal 
Verification 

Formal 
Synthesis 
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Formal Specification 

= stating structure, behavior, properties of some artifact in formal way 
 

Formalization 

 abstracts from unnecessary implementation details 

 provides rigorous mathematical notation 

 abstraction allows high-level reasoning while implementation details 
are not clear yet 

 allows to avoid ambiguous or inconsistent specifications. 
 

Difficulties: 

 Difficult to comprehend by engineers  

 Few practical tools for refinement/ checking/ feature oriented specs  
 good example: ASM (Gurevich), B-method, Bogor,... 
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Formal Synthesis I 

Initial Formal Spec 

1st Refinement 

3rd Refinement 

2nd Refinement 

4th Refinement 
(last refinement) 

Compiler 

Compiler 

C Program 
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Formal Synthesis II 

 integrates development process and verification  

 incremental refinement steps guided by domain 
heuristics 

 splits large verification tasks (divide et empera) … 

… but forces dramatic change in development process 

 it works but it is costly 

 each refinement step eiher 

 is correct by construction or 

 uses FMs for verification 

 example: B-Method and Rodin tool  
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Formal Verification 

 General assumption: requirements spec and system spec defined 

 formal verification checks whether implementation representation 
satisfies requirements specification or not. 

 full blown verification,e.g., “post mortem verification” is difficult. 

 simplifications:  

 focus on simple partial specifications  

 feature orientation:  

 type safety,  

 functional equivalence of systems,…  

 methods (implemented in tools): 

 simple algorithms for deducing isolated properties directly 

 complex algorithms for hard or even generally undecidable problems 
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Classes of verification methods 

 Boolean methods: 

 SAT, BDDs, ATPG, combinational equivalence check 

 Finite state methods: 

 bisimulation and equivalence checking of automata,  
model checking (MC) 

 Term based methods: 

 term rewriting, resolution, tableaux, theorem proving 

 Abstraction based methods 

 BDDs, symbolic MC, theorem proving  
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Typical Formal Methods for Software 

 Testing 

 Deductive verification 

 Model checking (automatic verification) 

 Static analysis 

 Combinations of the above 
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Testing 

Model 
Checking 

Deductive 
Verification 
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(Traditional) testing 
 Executing paths in the software in order to exercise (and  

discover) errors 
 

 The traditional and still most common method in sw industry 
       + 

 

 Partially manual, some automation tools exist (for running 
tests and reporting)      - 

 

 Applied directly to software (some times small modifications 
necessary to support testing, e.g. resets)  + 

 

 Not comprehensive. Errors often survive   - 
 

 Based on intuition and experience of tester  +/- 
 

 Formal spec is not needed    +/- 

Testing 



23 

Deductive Verification 

 Apply theories and logic inference to prove properties 
of a system specification formally  

 Based on mathematical principles   + 

 Requires expertise in logic, math and tools usage - 

 Highly time consuming     - 

 Susceptible to discrepancies between sw and model- 

 Practical only with tool support    - 

 Applicable on small and medium size examples  - 

 Requires accurate specification    - 

 If doable provides full certainty of correctness + 

Deductive 
Verification 
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Model Checking 

 Uses graph theory and automata theory to verify properties of 
programs automatically 

 Requires modelling and specification 

 State space explosion: often bad modeling causes insufficient 
memory and exponential time growth 

 Algorithmic state space exploration makes it limited to finite 
state systems 

 Many heuristics to reduce time/space 

Model 
Checking 
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Comparing verification methods 

             Method 

Criterion 

  Testing  Deductive 

Verification 

   Model 

 Checking 

Size of system Small-Very large Limited examples 100s-1000s lines 

Time Minutes-Hours Days-Weeks Minutes-Hours 

Expertise Test engineers/ 
programmers 

Mathematicians, 
Comp-Sci., Logic. 

Comp.-Scientists/ 
sw engineers 

Popularity SW/HW industry Mostly research Reserch/industry 

Specification Informal 
requirement docs 

Logic or 
automata based 

Logic or 
automata based 

Modelling / 
corrections 

Not needed / 
code correction 

Must /via formal 
representation 

Must/via formal 
representation 
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Model 
Checking 

Deductive 
Verification 

Verification of Abstraction  

 General startegy 
 Do abstractions to reduce the 

system state space (e.g., to 
finite states, if possible). 

 Then verify correctness 
properties of that abstraction. 
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Testing 

Model 
Checking 

Deductive 
Verification 
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Testing 

Model 
Checking 

Deductive 
Verification 
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Testing 

Model 
Checking 

Deductive 
Verification 
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Testing 

Model 
Checking 

Deductive 
Verification 

Symbolic Verification / Testing 

 Use symbolic verification to 
generate abstract test path 
conditions. 

 Derive the explicit (executable) 
paths by model checker using 
abstract paths and temporal 
formulas describing test goals. 
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Foci of the course (refined) 

 Techniques: MC, deductive verification, refinement 

 Tools (based on different theoretical backgrounds): 

 Theoretical background 

 Semantics / Algorithms / Datastructures 

 How does it work? 

 Arhitecture/ Capacity and restrictions 

 Tool in work: hands-on experience with Uppaal, ... 

 Labs:  

 Read-write over unreliable channel 

 Self-stabilizing systems 

 Scheduling 
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Labs 

 We will use model checker UppAal to check the 
properties of specifications.  

 

 We use theorem proving assistant Prover9 to 
prove formala of propositional 1-st order calculi 
and  

 

 MB test generators 
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Server for experiments 

 Tools that run under Linux will be available in server 
Dijkstra 

 If you have X server (you run Linux, FreeBSD, 
MacOSX, ...) then just: 



 Under Windows you need additional software, e.g. 

XWin32 (commercial), to run programs with GUI 

from dikstra.cs.ttu.ee. Use shell account by using 
e.g. Putty as the client. 
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Course organization I 

 Lecture: Prof. Jüri Vain 

 Wed 14.00 – 15.30 

 Room ICT-A1 

 Labs 

Instructors: Evelin Halling 

 Wed 16.00 – 17.30 

 Room ICT- 401 

 Exercises: Jüri Vain 
 Cancelled since Feb. 2015 
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Course organization II 

 13 lectures, 8 labs 

 3 (small) lab projects 

 3 tests (> 50% means pass) 

 Exam (written) 
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Topics to be covered 

 Foundations: logics, models & specifications 

 Algorithmic verification using model checking 

 Deductive verification of (sequential and parallel) 
programs using Hoare logics 

 Verification of RT- systems 

 Verifying fault-tolerance 

 Refinement based development 

 Intro to model based testing 
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Home reading 

 Formal methods homepage http://vl.fmnet.info/  
  

 Mike Gordon: Specification and Verification I. 
www.cl.cam.ac.uk/users/mjcg/Teaching/SpecVer1/SpecVer1.html 

 Z- method http://www.cs.uiowa.edu/~fleck/181.html 
 ASM http://www.di.unipi.it/~boerger/LC01.html 
 SDL  http://www.sdl-forum.org/sdl2000present/sld001.htm 
   http://www.sdl-forum.org/sdl2000present/tsld001.htm 
 Model checker: Uppaal:  www.docs.uu.se and www.uppaal.com 

 

 The reading list will be updated dynamically during the course 
 

 

http://vl.fmnet.info/
http://www.fmeurope.org/
http://www.cl.cam.ac.uk/users/mjcg/Teaching/SpecVer1/SpecVer1.html
http://www.cs.uiowa.edu/~fleck/181.html
http://www.di.unipi.it/~boerger/LC01.html
http://www.sdl-forum.org/sdl2000present/sld001.htm
http://www.sdl-forum.org/sdl2000present/sld001.htm
http://www.sdl-forum.org/sdl2000present/sld001.htm
http://www.sdl-forum.org/sdl2000present/tsld001.htm
http://www.sdl-forum.org/sdl2000present/tsld001.htm
http://www.sdl-forum.org/sdl2000present/tsld001.htm
http://www.docs.uu.se/
http://www.uppaal.com/

