
1

Formal methods
(in RT embedded systems design)

Prof. Jüri Vain

Spring 2015

ITI0130, ITI8530

2

Formal methods – why?
Example: auto-pilot

Problem:
 Design a module in aircraft auto-pilot that avoids

collision with other planes.

One possible design solution:

 When distance is 1km, give warning to other plane
and notify pilot. When distance is 300m, and no
changes in the course of other plane, go up.

3

Problem with solution

 Both planes have the same software. Both
go up...

 Some famous bugs

 several NASA space missions lost,

 Intel floating point processor, etc.

 Hard to predict all behaviours!

 US aircraft went to southern hemisphere and …
flipped when crossing the equator

 Software written for US F-16

 accidents when reused in Israeli aircraft flown over the
Dead Sea

 (altitude < sea level)
4

This happens in real software!

5

 Moore’s Law:

 The performance of microprocessors

 doubles every 18 months

 Proebsting’s law: Compiler technology doubles the performance
of typical programs every 18 years

 Gilder’s Telecosom Law: 3x bandwidth/year for 25 more years

Design costs tend to grow faster than the size of the system

Why FMs? (I)
Increasing complexity/costs of system development

 Today:

 10 Gbps per channel

 4 channels per fiber: 40 Gbps

 32 fibers/bundle = 1.2 Tbps/bundle

 In lab 3 Tbps/fiber (400 x WDM)

 In theory 25 Tbps per fiber

 1 Tbps = USA 1996 WAN bisection bandwidth

1 fiber = 25 Tbps

6

Why FMs? (II)
Increasing dependability of systems

 Everything important depends on computers:
 stir by wire aircrafts
 banking
 stock market
 manufacturing workflow, …

 Quality concerns due to the increasing
 functionality
 security
 mobility
 new business processes, … Ariadne 5 accident

The launch failure brought the high risks associated with complex computing systems to the attention of
the general public, politicians, and executives, resulting in increased support for research on ensuring the
reliability of safety-critical systems. The subsequent automated analysis of the Ariane code was the first
example of large-scale static code analysis by abstract interpretation

http://en.wikipedia.org/wiki/Safety-critical_system
http://en.wikipedia.org/wiki/Safety-critical_system
http://en.wikipedia.org/wiki/Safety-critical_system
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Abstract_interpretation

7

Implications of complexity & dependability growth

 Quality dilemma: drop quality for more features
 Testing and verification are the bottlenecks of sw processes
 Typically > 50% of development costs are spent on error

detection/diagnosis/repairment

 FM research challenge: find efficient methods for sw synthesis,
test and verification

 Trends: combine FM and testing in the sw process
FMs for isolated tasks  integrating FMs into full life cycle

 Current practice: MDD (Model Driven Development)

 Experts in FM are increasingly needed in high-tech industry,
 specially in cyber-physical systems (robotics, smart energy grids,

smart houses, mobile applications etc).

8

Test & Verification

 Testing
 Standard definition: dynamic execution / simulation of a system
 Present view: tests have to be integrated in development process
 Extreme view: testing should “drive” the development process

 Verification

 Standard definition: static checking, symbolic execution.

 In hw design community: verification means also testing

 Our view: Testing  Verification

 Testing is partial exploration method (not all executions are
covered)

 Verification is complete method but more costly than testing

9

Verification: process and actors

$$$
SPEC Informal

requirements

Code

Bug
report

Steps covered with FMs

Design

Closer look on Model-Based Testing (MBT)
process

 Goal: Check if real system conforms
with requirements specification.

 Advantages/disadvantages
+ model hides irrelevant details of

implementation;

+ automatic generation and execution of
tests;

+ systematic coverage of requirements

+ relevant in regression testing

- modeling overhead!

10

11

Formal Methods in general

 FMs deal with formal notations – state, type, data refinement,...

 Formal notions have rigorous semantics

 Emphasizes static / symbolic reasoning about abstractions

 (standard definition of verification falls into this category)

 Too narrow view on FMs in digital design – covers only
equivalence and model checking, but there is much more

 FMs are not esoteric, e.g. compilation in a broad sense is a FM

 (high-level description is translated into low-level description).

12

Focus of this course

 Tool-supported reasoning about the

correctness of programs and systems.

13

Formal Methods: Classification

Z
ASM

Some profiles of
UML??

Formal
Specification

 SDL

Synchronous
Languages

 Compiler tech.

 Model checking

Theorem Proving
Static analysis

 Equivalence
 Checking
 SAT

Formal
Verification

Formal
Synthesis

14

Formal Specification

= stating structure, behavior, properties of some artifact in formal way

Formalization

 abstracts from unnecessary implementation details

 provides rigorous mathematical notation

 abstraction allows high-level reasoning while implementation details
are not clear yet

 allows to avoid ambiguous or inconsistent specifications.

Difficulties:

 Difficult to comprehend by engineers

 Few practical tools for refinement/ checking/ feature oriented specs
 good example: ASM (Gurevich), B-method, Bogor,...

15

Formal Synthesis I

Initial Formal Spec

1st Refinement

3rd Refinement

2nd Refinement

4th Refinement
(last refinement)

Compiler

Compiler

C Program

16

Formal Synthesis II

 integrates development process and verification

 incremental refinement steps guided by domain
heuristics

 splits large verification tasks (divide et empera) …

… but forces dramatic change in development process

 it works but it is costly

 each refinement step eiher

 is correct by construction or

 uses FMs for verification

 example: B-Method and Rodin tool

18

Formal Verification

 General assumption: requirements spec and system spec defined

 formal verification checks whether implementation representation
satisfies requirements specification or not.

 full blown verification,e.g., “post mortem verification” is difficult.

 simplifications:

 focus on simple partial specifications 

 feature orientation:

 type safety,

 functional equivalence of systems,…

 methods (implemented in tools):

 simple algorithms for deducing isolated properties directly

 complex algorithms for hard or even generally undecidable problems

19

Classes of verification methods

 Boolean methods:

 SAT, BDDs, ATPG, combinational equivalence check

 Finite state methods:

 bisimulation and equivalence checking of automata,
model checking (MC)

 Term based methods:

 term rewriting, resolution, tableaux, theorem proving

 Abstraction based methods

 BDDs, symbolic MC, theorem proving

20

Typical Formal Methods for Software

 Testing

 Deductive verification

 Model checking (automatic verification)

 Static analysis

 Combinations of the above

21

Testing

Model
Checking

Deductive
Verification

22

(Traditional) testing
 Executing paths in the software in order to exercise (and

discover) errors

 The traditional and still most common method in sw industry
 +

 Partially manual, some automation tools exist (for running
tests and reporting) -

 Applied directly to software (some times small modifications
necessary to support testing, e.g. resets) +

 Not comprehensive. Errors often survive -

 Based on intuition and experience of tester +/-

 Formal spec is not needed +/-

Testing

23

Deductive Verification

 Apply theories and logic inference to prove properties
of a system specification formally

 Based on mathematical principles +

 Requires expertise in logic, math and tools usage -

 Highly time consuming -

 Susceptible to discrepancies between sw and model-

 Practical only with tool support -

 Applicable on small and medium size examples -

 Requires accurate specification -

 If doable provides full certainty of correctness +

Deductive
Verification

24

Model Checking

 Uses graph theory and automata theory to verify properties of
programs automatically

 Requires modelling and specification

 State space explosion: often bad modeling causes insufficient
memory and exponential time growth

 Algorithmic state space exploration makes it limited to finite
state systems

 Many heuristics to reduce time/space

Model
Checking

25

Comparing verification methods

 Method

Criterion

 Testing Deductive

Verification

 Model

 Checking

Size of system Small-Very large Limited examples 100s-1000s lines

Time Minutes-Hours Days-Weeks Minutes-Hours

Expertise Test engineers/
programmers

Mathematicians,
Comp-Sci., Logic.

Comp.-Scientists/
sw engineers

Popularity SW/HW industry Mostly research Reserch/industry

Specification Informal
requirement docs

Logic or
automata based

Logic or
automata based

Modelling /
corrections

Not needed /
code correction

Must /via formal
representation

Must/via formal
representation

26

Model
Checking

Deductive
Verification

Verification of Abstraction

 General startegy
 Do abstractions to reduce the

system state space (e.g., to
finite states, if possible).

 Then verify correctness
properties of that abstraction.

27

Testing

Model
Checking

Deductive
Verification

28

Testing

Model
Checking

Deductive
Verification

29

Testing

Model
Checking

Deductive
Verification

30

Testing

Model
Checking

Deductive
Verification

Symbolic Verification / Testing

 Use symbolic verification to
generate abstract test path
conditions.

 Derive the explicit (executable)
paths by model checker using
abstract paths and temporal
formulas describing test goals.

31

Foci of the course (refined)

 Techniques: MC, deductive verification, refinement

 Tools (based on different theoretical backgrounds):

 Theoretical background

 Semantics / Algorithms / Datastructures

 How does it work?

 Arhitecture/ Capacity and restrictions

 Tool in work: hands-on experience with Uppaal, ...

 Labs:

 Read-write over unreliable channel

 Self-stabilizing systems

 Scheduling

32

Labs

 We will use model checker UppAal to check the
properties of specifications.

 We use theorem proving assistant Prover9 to
prove formala of propositional 1-st order calculi
and

 MB test generators

33

Server for experiments

 Tools that run under Linux will be available in server
Dijkstra

 If you have X server (you run Linux, FreeBSD,
MacOSX, ...) then just:



 Under Windows you need additional software, e.g.

XWin32 (commercial), to run programs with GUI

from dikstra.cs.ttu.ee. Use shell account by using
e.g. Putty as the client.

34

Course organization I

 Lecture: Prof. Jüri Vain

 Wed 14.00 – 15.30

 Room ICT-A1

 Labs

Instructors: Evelin Halling

 Wed 16.00 – 17.30

 Room ICT- 401

 Exercises: Jüri Vain
 Cancelled since Feb. 2015

35

Course organization II

 13 lectures, 8 labs

 3 (small) lab projects

 3 tests (> 50% means pass)

 Exam (written)

36

Topics to be covered

 Foundations: logics, models & specifications

 Algorithmic verification using model checking

 Deductive verification of (sequential and parallel)
programs using Hoare logics

 Verification of RT- systems

 Verifying fault-tolerance

 Refinement based development

 Intro to model based testing

37

Home reading

 Formal methods homepage http://vl.fmnet.info/


 Mike Gordon: Specification and Verification I.
www.cl.cam.ac.uk/users/mjcg/Teaching/SpecVer1/SpecVer1.html

 Z- method http://www.cs.uiowa.edu/~fleck/181.html
 ASM http://www.di.unipi.it/~boerger/LC01.html
 SDL http://www.sdl-forum.org/sdl2000present/sld001.htm
 http://www.sdl-forum.org/sdl2000present/tsld001.htm
 Model checker: Uppaal: www.docs.uu.se and www.uppaal.com

 The reading list will be updated dynamically during the course

http://vl.fmnet.info/
http://www.fmeurope.org/
http://www.cl.cam.ac.uk/users/mjcg/Teaching/SpecVer1/SpecVer1.html
http://www.cs.uiowa.edu/~fleck/181.html
http://www.di.unipi.it/~boerger/LC01.html
http://www.sdl-forum.org/sdl2000present/sld001.htm
http://www.sdl-forum.org/sdl2000present/sld001.htm
http://www.sdl-forum.org/sdl2000present/sld001.htm
http://www.sdl-forum.org/sdl2000present/tsld001.htm
http://www.sdl-forum.org/sdl2000present/tsld001.htm
http://www.sdl-forum.org/sdl2000present/tsld001.htm
http://www.docs.uu.se/
http://www.uppaal.com/

