
Machine learning
ITI8600: Methods of Knowledge Based Software Development

Chapter 18 from AIMA + links



Learning in AI

• Deductive: deduce rules/facts from what is already known

• Inductive: learn new rules/facts from a data set D

We will now focuse on inductive learning.
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Types of inductive learning

• Supervised: The machine has access to a teacher who corrects it

• Unsupervised: No access to teacher. The machine must figure out 
what the structure might be in the data/environment.



Tracks  in supervised learning

• Supervised: The machine has access to a teacher who corrects it
• Regression: learning function values

• classification: learning categories

• Unsupervised: No access to teacher. The machine must figure out 
what the structure might be in the data/environment.



Tracks in unsupervised learning

• Supervised: The machine has access to a teacher who corrects it
• Regression: learning function values

• classification: learning categories

• Unsupervised: No access to teacher. The machine must figure out 
what the structure might be in the data/environment.
• Clustering

• Dimensionality reduction



http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html


f(x) is the target function
An example is a pair [x, f(x)]
Learning task: find a hypothesis h such that h(x)  f(x) given a 
training set of examples D = {[xi, f(xi) ]}, i = 1,2,…,N
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Tracks in unsupervised learning



Inductive learning – example B

• Construct h so that it agrees with f.

• The hypothesis h is consistent if it agrees with f on all observations.

• Ockham’s razor: Select the simplest consistent hypothesis.

• How achieve good generalization?

Consistent linear fit Consistent 7th order 
polynomial fit

Inconsistent linear fit.
Consistent 6th order
polynomial fit.

Consistent sinusoidal 
fit



Inductive learning – example C
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Inductive learning – example C
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y

Sometimes a consistent hypothesis is worse than an inconsistent



Statistical learning

• Suppose we observe     and for

• We believe that there is a relationship between Y and at least 
one of the X’s.

• We can model the relationship as

• Where f is an unknown function and ε is a random error with 
mean zero.

iii fY  )(X

Yi Xi = (Xi1,...,Xip) i =1,...,n



A simple example
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A simple example
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Different noise (standard deviation)

The difficulty of 
estimating f will depend 
on the standard 
deviation of the ε’s.
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Different estimates for f
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Learning problems

• The hypothesis takes as input a set of attributes x

and returns a ”decision” h(x) = the predicted 

(estimated) output value for the input x.

• Discrete valued function ⇒ classification

• Continuous valued function ⇒ regression



Why do we estimate f?

• Statistical Learning, and this part of the course, are all about 
how to estimate f.

• The term statistical learning refers to using the data to “learn” f.

• Why do we care about estimating f?

• There are 2 reasons for estimating f,
• Prediction and

• Inference.



1. Prediction

If we can produce a good estimate for f (and the variance
of ε is not too large) we can make accurate predictions for
the response, Y, based on a new value of X.



Example: Direct Mailing Prediction

• Interested in predicting how much money an individual will 
donate based on observations from 90,000 people on which we 
have recorded over 400 different characteristics.

• Don’t care too much about each individual characteristic. 

• Just want to know: For a given individual should I send out a 
mailing?



2. Inference

• Alternatively, we may also be interested in the type of 
relationship between Y and the X's. 

• For example, 
• Which particular predictors actually affect the response? 

• Is the relationship positive or negative? 

• Is the relationship a simple linear one or is it more complicated etc.?



Example: Housing inference

• Wish to predict median house price based on 14 variables.

• Probably want to understand which factors have the biggest 
effect on the response and how big the effect is.

• For example how much impact does a river view have on the 
house value etc. 



How do we estimate f?

• We will assume we have observed a set of training data

• We must then use the training data and a statistical method to 
estimate f.

• Statistical Learning Methods: 
• Parametric Methods

• Non-parametric Methods



Classification

Order into one out of several classes 
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Example

• Predict how people choose restaurants using decision trees



Method: Decision trees

• “Divide and conquer”: 
Split data into smaller and 
smaller subsets. 

• Splits usually on a single 
variable 

x1 > a ?

yes no

x2 > b ? x2 > g ?

yes yesno no



The wait@restaurant decision tree

This is our true function.
Can we learn this tree from examples?



Inductive learning of decision tree

• Simplest: Construct a decision tree with one leaf for every 
example = memory based learning.
Not very good generalization.

• Advanced: Split on each variable so that the purity of each split 
increases (i.e. either only yes or only no)

• Purity measured,e.g, with entropy



Inductive learning of decision tree

• Simplest: Construct a decision tree with one leaf for every 
example = memory based learning.
Not very good generalization.

• Advanced: Split on each variable so that the purity of each split 
increases (i.e. either only yes or only no)

• Purity measured,e.g, with entropy



Inductive learning of decision tree

• Simplest: Construct a decision tree with one leaf for every 
example = memory based learning.
Not very good generalization.

• Advanced: Split on each variable so that the purity of each split 
increases (i.e. either only yes or only no)

• Purity measured,e.g, with entropy
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The entropy is maximal when
all possibilities are equally
likely.

The goal of the decision tree
is to decrease the entropy in
each node.

Entropy is zero in a pure ”yes”
node (or pure ”no” node).

The second law of thermodynamics:
Elements in a closed system tend 
to seek their most probable distribution; 
in a closed system entropy always increases 

Entropy is a measure of ”order” in a
system.



Decision tree learning algorithm

• Create pure nodes whenever possible

• If pure nodes are not possible, choose the split that leads to the 
largest decrease in entropy.



Decision tree learning example

10 attributes:

1. Alternate: Is there a suitable alternative restaurant nearby? {yes,no}

2. Bar: Is there a bar to wait in? {yes,no}

3. Fri/Sat: Is it Friday or Saturday? {yes,no}

4. Hungry: Are you hungry? {yes,no}

5. Patrons: How many are seated in the restaurant? {none, some, full}

6. Price: Price level {$,$$,$$$}

7. Raining: Is it raining? {yes,no}

8. Reservation: Did you make a reservation? {yes,no}

9. Type: Type of food {French,Italian,Thai,Burger}

10. Wait: {0-10 min, 10-30 min, 30-60 min, >60 min}



Decision tree learning example

T = True, F = False
6 True,
6 False        30.0
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example
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Decision tree learning example

Patrons?

2 F

4 T

None Full

Largest entropy decrease (0.16)
achieved by splitting on Patrons.

2 T, 4 F

Some

X? Continue like this, making new splits, 
always purifying nodes.



Decision tree learning example

Induced tree (from examples)



Decision tree learning example

True tree



Decision tree learning example

Induced tree (from examples)

Cannot make it more complex
than what the data supports.



How do we know it is correct?

How do we know that h  f ? 
(Hume's Problem of Induction)

• Try h on a new test set of examples
(cross validation)

...and assume the ”principle of uniformity”, i.e. the result we get on 
this test data should be indicative of results on future data. Causality 
is constant.

Inspired by a slide by V. Pavlovic



Learning curve for the decision tree algorithm on 100 randomly
generated examples in the restaurant domain.
The graph summarizes 20 trials.



Cross-validation

Use a “validation set”.

Dtrain

Dval

Eval

valgen EE 

Split your data set into two
parts, one for training your
model and the other for 
validating your model.
The error on the validation 
data is called “validation error”
(Eval)



K-Fold Cross-validation
More accurate than using only one validation set.
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PAC

• Any hypothesis that is consistent with a sufficiently large set of 
training (and test) examples is unlikely to be seriously wrong; it is 
probably approximately correct (PAC).

• What is the relationship between the generalization error and the 
number of samples needed to achieve this generalization error?



instance 

space X

f

h

f and h disagree

The error

X = the set of all possible examples (instance space).

D = the distribution of these examples.

H = the hypothesis space (h H).

N = the number of training data.

Image adapted from F. Hoffmann @ KTH
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Probability for bad hypothesis

Suppose we have a bad hypothesis h with error(h) > .

What is the probability that it is consistent with N samples?

• Probability for being inconsistent with one 
sample = error(h) > .

• Probability for being consistent with one 
sample = 1 – error(h) < 1 – .

• Probability for being consistent with N
independently drawn samples < (1 – )N.



Probability for bad hypothesis

What is the probability that the set Hbad of bad hypotheses with 

error(h) >  contains a consistent hypothesis?

NNhhP )1()1())(error  consistent ( bad   HH



Probability for bad hypothesis

What is the probability that the set Hbad of bad hypotheses with 

error(h) >  contains a consistent hypothesis?

NNhhP )1()1())(error  consistent ( bad   HH

If we want this to be less than some constant d, then
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Probability for bad hypothesis

What is the probability that the set Hbad of bad hypotheses with 

error(h) >  contains a consistent hypothesis?

NNhhP )1()1())(error  consistent ( bad   HH

If we want this to be less than some constant d, then
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Don’t expect to learn very well if H is large



How make learning work?

• Use simple hypotheses
• Always start with the simple ones first

• Constrain H with priors
• Do we know something about the domain?

• Do we have reasonable a priori beliefs on parameters?

• Use many observations
• Easy to say...

• Cross-validation...



Slides credits

The slides contain slides from the following sources:

• AI course from Halmstadt University 

• Applied Modern Statistical Learning Techniques: 
http://www.alsharif.info/#!iom530/c21o7


