RSA Attacks and Implementation Failures

Ahto Buldas Aleksandr Lenin

Nov 11, 2019

Small Modulus and Factoring

Let n = pq be the RSA modulus and p < q are prime numbers.

Trial Division runs in time $O(\sqrt{n})$.

Pollard's rho algorithm: $O(\sqrt[4]{n})$.

Lenstra's elliptic curve factorization:

$$e^{(1+o(1))\sqrt{\ln n \ln \ln n}}$$

General Number Field Sieve (GNFS):

$$e^{\left(\sqrt[3]{\frac{64}{9}} + o(1)\right)\sqrt[3]{\ln n(\ln \ln n)^2}}$$

Common Modulus and Simmons Attack

A has e_A and d_A such that $e_A d_A \equiv 1 \pmod{\varphi(n)}$.

B has e_B and d_B such that $e_Bd_B\equiv 1\pmod{\varphi(n)}$.

Let $gcd(e_A, e_B) = 1$, which is a very likely case

A and B are sent ciphertexts $y_A = m^{e_A} \mod n$ and $y_B = m^{e_B} \mod n$ of the same message m.

Simmons attack:

Find $\alpha, \beta \in \mathbb{Z}$ so that $\alpha e_A + \beta e_B = 1$ and $\alpha < 0$, i.e. $\alpha = - |\alpha|$.

Compute $y_A^{-1} \mod n$ and

$$\left[y_A^{-1}\right]^{|\alpha|} \cdot \left[y_B\right]^{\beta} = m^{\alpha e_A} \cdot m^{\beta e_B} = m^{\alpha e_A + \beta e_B} = m.$$

Factoring with Square Roots of 1

Suppose we know $b \neq \pm 1$ such that $b^2 \equiv 1 \pmod{n}$ (where n = pq).

From $b^2 = 1$ it follows that $(b+1)(b-1) \equiv 0 \pmod{n}$.

As $b \neq \pm 1$, we have that $b+1 \not\equiv 0 \pmod n$ and $b-1 \not\equiv 0 \pmod n$.

As p|(p+1)(p-1) then either p|(b+1) or p|(b-1).

Hence, $gcd(b+1,n) \in \{p,q\}$ and we can factor n.

Finding Square Roots of 1 from Key-Pairs (e,d)

As $ed \equiv 1 \pmod{\varphi(n)}$, we have $ed - 1 = c \cdot \varphi(n) = 2^s \cdot \lambda$, where $\lambda \in \mathbb{N}$ is odd.

Finding Square Roots:

- Pick random $a \in \{2, \ldots, n-2\}$ so that gcd(a, n) = 1.
- \bullet Find the smallest j>0 such that $a^{2^{j}\lambda}=1$ [exists, because $\varphi(n)\mid 2^{s}\lambda]$
- o If $a^{2^{j-1}\lambda} \equiv -1 \pmod{n}$, output $a^{2^{j-1}\lambda} \mod n$, otherwise try again.

It can be shown that a non-trivial $\sqrt{1}$ is found with probability $\frac{1}{2}.$

Deterministic procedure discovered in 2004.

Correctness Proof for the Square Root Algorithm

Lemma 1: For any prime numbers $p,q\geq 3$, there exists $t\in\mathbb{N}$, such that $\frac{p-1}{2^t}$ and $\frac{q-1}{2^t}$ are integers and at least one of them is odd. (Obvious)

Lemma 2: For any prime $p \geq 3$, there are $\frac{p-1}{2}$ elements $x \in \mathbb{Z}_p^*$ with $x^{\frac{p-1}{2}} \equiv 1 \pmod p$ and $\frac{p-1}{2}$ elements with $x^{\frac{p-1}{2}} \equiv -1 \pmod p$.

Proof: Fermat's theorem implies that all p-1 elements of \mathbb{Z}_p^* are roots of the polynomial $X^{p-1}-1$. Hence, $y^2-1\equiv 0\pmod p$ for any $y=x^{\frac{p-1}{2}}$. As \mathbb{Z}_p is a field, we have $y\equiv \pm 1\pmod p$.

Therefore, every $x\in\mathbb{Z}_p^*$ is a root of $X^{\frac{p-1}{2}}-1$ or a root of $X^{\frac{p-1}{2}}+1$. As \mathbb{Z}_p is a field, none of these polynomials has more than $\frac{p-1}{2}$ roots, which means that they both have exactly $\frac{p-1}{2}$ roots, because $|\mathbb{Z}_p^*|=p-1$.

Theorem: Let $p > q \ge 3$ be primes, n = pq, and $ed \equiv 1 \pmod{\varphi(n)}$.

There exists $k \in \mathbb{N}$ so that $\frac{ed-1}{2^k} \in \mathbb{N}$ and $x^{\frac{ed-1}{2^k}}$ is a non-trivial $\sqrt{1}$ in \mathbb{Z}_n with probability $\frac{1}{2}$ for random $x \leftarrow \mathbb{Z}_n^*$.

Proof: Let \sim be the equivalence relation between \mathbb{Z}_n and $\mathbb{Z}_p \times \mathbb{Z}_q$ from Chinese remainder theorem, and $\alpha p + \beta q = 1$, where $\alpha, \beta \in \mathbb{Z}$. Then for every $x \in \mathbb{Z}_n$, $x_p \in \mathbb{Z}_p$ and $x_q \in \mathbb{Z}_q$:

$$x \sim (x \bmod p, x \bmod q)$$

 $\beta q x_p + \alpha p x_q \bmod n \sim (x_p, x_q)$.

Non-trivial $\sqrt{1}$ correspond to pairs (1, q-1) and (p-1, 1).

Let $ed-1=c\cdot \varphi(n)$ where $c=2^m\cdot \ell\in \mathbb{N}$ and ℓ is odd.

Let $ed - 1 = 2^s \lambda$, where λ is odd.

Let k=t+m+1, where $t\in\mathbb{N}$ is chosen according to Lemma 1, which means that $\frac{p-1}{2^t}$ and $\frac{q-1}{2^t}$ are integers. By $p,q\geq 3$ we have $t\geq 1$.

As $2^{2t}\mid \varphi(n)$, we have from $2^s\lambda=ed-1=2^m\ell\cdot \varphi(n)$ that

$$s \ge m + 2t \ge m + t + 1 = k$$

and hence $\frac{ed-1}{2^k} \in \mathbb{N}$. Therefore, $\frac{ed-1}{2^k} = \frac{\varphi(n)\ell}{2^{t+1}} = \frac{(p-1)(q-1)\ell}{2\cdot 2^t}$ and:

$$x^{\frac{ed-1}{2^k}} \equiv x^{\frac{(p-1)(q-1)\ell}{2 \cdot 2^t}} \sim \left(\left(x_p^{\frac{p-1}{2}} \right)^{\ell \frac{q-1}{2^t}}, \left(x_q^{\frac{q-1}{2}} \right)^{\ell \frac{p-1}{2^t}} \right) .$$

As $x_p^{\frac{p-1}{2}}$ and $x_q^{\frac{q-1}{2}}$ are congruent to -1 or 1 with equal probability, and at least one of $\frac{q-1}{2^t}$ and $\frac{p-1}{2^t}$ is odd, the probability that the components of the pair are different (i.e. exactly one is 1), is $\frac{1}{2}$ and hence $x^{\frac{ed-1}{2^k}}$ is a non-trivial $\sqrt{1}$ with probability $\frac{1}{2}$.

Small e: Hastad Broadcast Attack

Users $A,\,B,\,C$ have RSA moduli $n_1,\,n_2,\,n_3.$ Say e=3 and the moduli have no common divisors. Say, m is broadcasted to A,B,C. Having the ciphertexts:

$$y_A = m^3 \mod n_1, \qquad y_B = m^3 \mod n_2, \qquad y_C = m^3 \mod n_3$$
,

the attacker uses CRT to find the unique $x \in \mathbb{Z}_{n_1n_2n_3}$ such that

$$\begin{cases} x \equiv y_A \pmod{n_1} \\ x \equiv y_B \pmod{n_2} \\ x \equiv y_C \pmod{n_3} \end{cases}$$

As $m < \min\{n_1, n_2, n_3\}$, then $m^3 < n_1 n_2 n_3$, which means that m^3 is also the solution of the congruences and hence $x = m^3$ by the uniqueness of the solution. The attacker just computes $m = \sqrt[3]{x}$

Homomorphity

RSA encryption has the following property:

$$\mathsf{E}(m_1 m_2) = (m_1 m_2)^e \mod n = m_1^e \cdot m_2^e \mod n$$

= $\mathsf{E}(m_1) \cdot \mathsf{E}(m_2) \mod n$.

For example:

$$\mathsf{E}(2m) = \mathsf{E}(2) \cdot \mathsf{E}(m) \mod n \ ,$$

which means that given the ciphertext $\mathsf{E}(m)$, one can compute the ciphertext $\mathsf{E}(2m)$ without using secret key.

Abusing the Homomorphity

Assume that a server has RSA public key (e, n).

Users send encrypted messages $\mathsf{E}(m)$ to the server, where m is assumed to be odd.

Otherwise (if m is even), the server replies with an error message.

Weakness: By communicating with the server, we can decrypt any ciphertext $\mathsf{E}(m)$.

Abusing the Homomorphity

By sending $\mathsf{E}(m)$ to the server, we learn if m is odd or even.

Compute $\mathsf{E}(2m) = \mathsf{E}(2) \cdot \mathsf{E}(m)$ and send it to the server.

If $m < \frac{n}{2}$, then 2m < n and as $2m \mod n$ is even, we get an error message.

If $\frac{n}{2} \leq m < n$, then $n \leq 2m < 2n$ and as $2m \mod n = 2m - n$ is odd, we do not get error messages.

Hence, we learn if $m < \frac{n}{2}$.

Secure Encryption

Semantic security: Ciphertext ${\cal C}$ must not reveal any information about the plaintext ${\cal M}$

The textbook RSA is not semantically secure

Example, encrypting yes/no votes. Given an encrypted vote

$$C = v^e \mod N$$
,

an attacker can encrypt both votes and compare the results to ${\cal C}.$

Random padding has to be applied before encryption

Bleichenbacher's Attack

The PKCS 1 padding looks like this:

02 | Random | 00 | Message

Say a server receives encrypted messages and returns an invalid ciphertext error message if the decrypted message has an incorrect padding

So, sending a random ciphertext ${\cal C}$ to the server, an attacker will know if the corresponding plaintext has 02 in the beginning

Bleichenbacher showed in 1998 that if an attacker who has access to such a server, can decrypt any ciphertext

Partial Key Exposure

Given an n-bit RSA modulus N, and n/4 least significant bits of the secret modulus d, it is easy to compute d

Given an n-bit RSA modulus N=pq, and n/4 least/most significant bits of p, the modulus N can be factored (Coppersmith 1996)

Timing Attacks

Let $d_n d_{n-1} \dots d_1 d_0$ be the bit-representation of d. The computation of $M^d \mod N$ is performed as follows:

$$z := M$$
, $C := 1$
For $i = 0 \dots N-1$ do:
if $d_i = 1$, then $C := C \cdot z \mod N$
 $z := z^2 \mod N$

The attacker asks the smartcard to compute a large number of exponents, measures the times and reconstructs d using statistical analysis.

Random Faults in Hardware

Smartcard applications of RSA frequently use CRT to speed up $m^d \mod n$ where n=pq:

$$d_p \leftarrow d \bmod p - 1 \qquad d_q \leftarrow d \bmod q - 1$$

$$C_p \leftarrow m^{d_p} \bmod p \qquad C_q \leftarrow m^{d_q} \bmod q$$

$$C \leftarrow \beta q C_p + \alpha p C_q \bmod n ,$$

where $\alpha, \beta \in \mathbb{Z}$ are constants such that $\alpha p + \beta q = 1$

Say, an error occurs when computing C_q and \underline{C} is the erroneous version of C. Then

$$\underline{C}^e \equiv m \pmod{p}$$
 $\underline{C}^e \not\equiv m \pmod{q}$

Hence, attacker can compute $gcd(n,\underline{C}^e-m)=p$ and factorize n

Shor's Factoring Attack on a Quantum Computer

Peter Shor showed in 1994, that quantum computers can find the period of a wide class of functions $f: \mathbb{Z} \to \mathbb{Z}_{2^m}$ in time $O(m^2)$.

By the period of f we mean the smallest positive integer λ , such that $f(x+\lambda)=f(x)$ for every x.

- Random $a \leftarrow \mathbb{Z}_n^*$ is chosen
- ② The order $r = \operatorname{ord}_n(a)$ of a is the period of $f(x) = a^x \mod n$ that is found by a quantum computer with probability $\frac{1}{\ln n}$
- **3** Using a and r a non-trivial $\sqrt{1}$ is found with probability $\frac{1}{2}$

In-Device Private Key Generation

Keys are generated inside smart-cards.

Pros: Improved trust model, compared to other generation options

Cons: Slow due to the small computational power

Current Practice in Prime Number Generation

- Random candidate p is chosen
- Trial division: It is ensured that p is not divisible by any members of a fixed set Π of small prime numbers
- Exponential tests, like the Fermat' test is applied:

$$a^{p-1} \mod p = 1$$

for a random $a \leftarrow \{2, 3, \dots, p-1\}$

The density of n-bit primes is approximately $\frac{1}{n}$.

Division is thousands of times faster than exponentiation.

Trial division eliminates bad candidates fast. Trial division diminishes the average number of exponential tests.

Fast-Prime Methods

Chooses candidates in a way that trial division is not needed.

Choose a first candidate a_0 so that $a_0 \mod M = 1$, where M is the product of all small primes in Π .

Choose the next candidates a_k by $a_k \leftarrow a_0 + kM$.

Pros: Faster generation of prime numbers

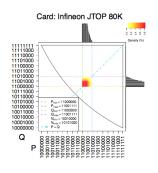
Cons: Lower entropy of prime numbers

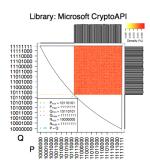
Output Anomalies of Prime Generators

The paper:

"The Million-Key Question – Investigating the Origins of RSA Public Keys" by Svenda, Nemec, Sekan, Kvasnovsky, Formanek, Komarek, and Matyas

analyses the output of several smart-card prime generators. Anomalies in the Infineon's output distribution were discovered.





Formula for the Infineon Primes

The paper:

"The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli." by Nemec, Sys, Svenda, Klinec, and Matyas.

revealed that the Infineon chip's prime numbers are in the form:

$$p = 65537^a \mod M + kM ,$$

where ${\cal M}$ is constant and the same for all chips.

For 2048-bit modulus N, M is the product of the first 126 primes.

All public moduli N satisfy $(65537^c - N) \mod M = 0$ for some c.

Such \emph{c} is found in microseconds by the Pohlig-Hellman algorithm

This test was disclosed by the authors in spring 2017, and reached Estonia in August 2017.

Naive Attack

Try all $\operatorname{ord}_M(65537)$ possible a-s and try to find k by Coppersmith's attack Here, $\operatorname{ord}_M(65537)$ is the order of 65537 in the multiplicative group \mathbb{Z}_M^* Naive search is infeasible: the number of a-s to examine is 2^{254} .

Making the Naive Attack Efficient

Main idea: Use a divisor M' of M, such that $\mathrm{ord}_{M'}(65537)$ is feasible, but still the number of bits in M' is larger than 2048/4 (necessary for the Coppersmith's attack).

Then, the prime numbers are still expressible in the form:

$$p = 65537^{a'} \mod M' + k'M'$$

Authors found optimal M^\prime in terms of the overall attack time by brute force search combined with greedy heuristics.

Impact of the Attack

By using optimal M^\prime , the number of possible a-s is 2^{34} for 2048-bit RSA modulus

 \boldsymbol{k} is found in 200 ms on a desktop computer by using Coppersmith's algorithm

The total costs by key estimated by authors:

- 30000 EUR in Amazon cloud
- 1000 EUR for electricity, without taking hardware into account

Conclusions

Certified≠secure: Though the Infineon chip was certified by Common Criteria, it does not mean it is secure against unknown attacks

Vulnerabilities in soft- and hardware are inevitable

IT-Systems design/management must take potential unknown vulnerabilities into account