RSA Attacks and Implementation Failures

Ahto Buldas Aleksandr Lenin

Nov 11, 2019

Small Modulus and Factoring

Let $n=p q$ be the RSA modulus and $p<q$ are prime numbers.
Trial Division runs in time $O(\sqrt{n})$.
Pollard's rho algorithm: $O(\sqrt[4]{n})$.
Lenstra's elliptic curve factorization:

$$
e^{(1+o(1)) \sqrt{\ln n \ln \ln n}}
$$

General Number Field Sieve (GNFS):

$$
\left.e^{\left(\sqrt[3]{\frac{64}{9}}+o(1)\right.}\right) \sqrt[3]{\ln n(\ln \ln n)^{2}}
$$

Common Modulus and Simmons Attack

A has e_{A} and d_{A} such that $e_{A} d_{A} \equiv 1(\bmod \varphi(n))$.
B has e_{B} and d_{B} such that $e_{B} d_{B} \equiv 1(\bmod \varphi(n))$.
Let $\operatorname{gcd}\left(e_{A}, e_{B}\right)=1$, which is a very likely case
A and B are sent ciphertexts $y_{A}=m^{e_{A}} \bmod n$ and $y_{B}=m^{e_{B}} \bmod n$ of the same message m.

Simmons attack:
Find $\alpha, \beta \in \mathbb{Z}$ so that $\alpha e_{A}+\beta e_{B}=1$ and $\alpha<0$, i.e. $\alpha=-|\alpha|$.
Compute $y_{A}^{-1} \bmod n$ and

$$
\left[y_{A}^{-1}\right]^{|\alpha|} \cdot\left[y_{B}\right]^{\beta}=m^{\alpha e_{A}} \cdot m^{\beta e_{B}}=m^{\alpha e_{A}+\beta e_{B}}=m
$$

Factoring with Square Roots of 1

Suppose we know $b \neq \pm 1$ such that $b^{2} \equiv 1(\bmod n)($ where $n=p q)$. From $b^{2}=1$ it follows that $(b+1)(b-1) \equiv 0(\bmod n)$. As $b \neq \pm 1$, we have that $b+1 \not \equiv 0(\bmod n)$ and $b-1 \not \equiv 0(\bmod n)$. As $p \mid(p+1)(p-1)$ then either $p \mid(b+1)$ or $p \mid(b-1)$. Hence, $\operatorname{gcd}(b+1, n) \in\{p, q\}$ and we can factor n.

Finding Square Roots of 1 from Key-Pairs (e, d)

As $e d \equiv 1(\bmod \varphi(n))$, we have $e d-1=c \cdot \varphi(n)=2^{s} \cdot \lambda$, where $\lambda \in \mathbb{N}$ is odd.

Finding Square Roots:

- Pick random $a \in\{2, \ldots, n-2\}$ so that $\operatorname{gcd}(a, n)=1$.
- Find the smallest $j>0$ such that $a^{2^{j} \lambda}=1$ [exists, because $\varphi(n) \mid 2^{s} \lambda$]
- If $a^{2^{j-1} \lambda} \equiv-1(\bmod n)$, output $a^{2^{j-1} \lambda} \bmod n$, otherwise try again.

It can be shown that a non-trivial $\sqrt{1}$ is found with probability $\frac{1}{2}$.
Deterministic procedure discovered in 2004.

Correctness Proof for the Square Root Algorithm

Lemma 1: For any prime numbers $p, q \geq 3$, there exists $t \in \mathbb{N}$, such that $\frac{p-1}{2^{t}}$ and $\frac{q-1}{2^{t}}$ are integers and at least one of them is odd. (Obvious)

Lemma 2: For any prime $p \geq 3$, there are $\frac{p-1}{2}$ elements $x \in \mathbb{Z}_{p}^{*}$ with $x^{\frac{p-1}{2}} \equiv 1(\bmod p)$ and $\frac{p-1}{2}$ elements with $x^{\frac{p-1}{2}} \equiv-1(\bmod p)$.
Proof: Fermat's theorem implies that all $p-1$ elements of \mathbb{Z}_{p}^{*} are roots of the polynomial $X^{p-1}-1$. Hence, $y^{2}-1 \equiv 0(\bmod p)$ for any $y=x^{\frac{p-1}{2}}$. As \mathbb{Z}_{p} is a field, we have $y \equiv \pm 1(\bmod p)$.
Therefore, every $x \in \mathbb{Z}_{p}^{*}$ is a root of $X^{\frac{p-1}{2}}-1$ or a root of $X^{\frac{p-1}{2}}+1$. As \mathbb{Z}_{p} is a field, none of these polynomials has more than $\frac{p-1}{2}$ roots, which means that they both have exactly $\frac{p-1}{2}$ roots, because $\left|\mathbb{Z}_{p}^{*}\right|=p-1$.

Theorem: Let $p>q \geq 3$ be primes, $n=p q$, and $e d \equiv 1(\bmod \varphi(n))$. There exists $k \in \mathbb{N}$ so that $\frac{e d-1}{2^{k}} \in \mathbb{N}$ and $x^{\frac{e d-1}{2^{k}}}$ is a non-trivial $\sqrt{1}$ in \mathbb{Z}_{n} with probability $\frac{1}{2}$ for random $x \leftarrow \mathbb{Z}_{n}^{*}$.

Proof: Let \sim be the equivalence relation between \mathbb{Z}_{n} and $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ from Chinese remainder theorem, and $\alpha p+\beta q=1$, where $\alpha, \beta \in \mathbb{Z}$. Then for every $x \in \mathbb{Z}_{n}, x_{p} \in \mathbb{Z}_{p}$ and $x_{q} \in \mathbb{Z}_{q}$:

$$
\begin{aligned}
x & \sim(x \bmod p, x \bmod q) \\
\beta q x_{p}+\alpha p x_{q} \bmod n & \sim\left(x_{p}, x_{q}\right)
\end{aligned}
$$

Non-trivial $\sqrt{1}$ correspond to pairs $(1, q-1)$ and $(p-1,1)$.
Let $e d-1=c \cdot \varphi(n)$ where $c=2^{m} \cdot \ell \in \mathbb{N}$ and ℓ is odd.
Let $e d-1=2^{s} \lambda$, where λ is odd.

Let $k=t+m+1$, where $t \in \mathbb{N}$ is chosen according to Lemma 1 , which means that $\frac{p-1}{2^{t}}$ and $\frac{q-1}{2^{t}}$ are integers. By $p, q \geq 3$ we have $t \geq 1$.
As $2^{2 t} \mid \varphi(n)$, we have from $2^{s} \lambda=e d-1=2^{m} \ell \cdot \varphi(n)$ that

$$
s \geq m+2 t \geq m+t+1=k
$$

and hence $\frac{e d-1}{2^{k}} \in \mathbb{N}$. Therefore, $\frac{e d-1}{2^{k}}=\frac{\varphi(n) \ell}{2^{t+1}}=\frac{(p-1)(q-1) \ell}{2 \cdot 2^{t}}$ and:

$$
x^{\frac{e d-1}{2^{k}}} \equiv x^{\frac{(p-1)(q-1) \ell}{2 \cdot 2^{t}}} \sim\left(\left(x^{\frac{p-1}{2}}\right)^{\ell \frac{q-1}{2^{t}}},\left(x^{\frac{q-1}{2}}\right)^{\ell \frac{p-1}{2^{t}}}\right)
$$

As $x_{p}^{\frac{p-1}{2}}$ and $x_{q}^{\frac{q-1}{2}}$ are congruent to -1 or 1 with equal probability, and at least one of $\frac{q-1}{2^{t}}$ and $\frac{p-1}{2^{t}}$ is odd, the probability that the components of the pair are different (i.e. exactly one is 1), is $\frac{1}{2}$ and hence $x^{\frac{e d-1}{2^{k}}}$ is a non-trivial $\sqrt{1}$ with probability $\frac{1}{2}$.

Small e: Hastad Broadcast Attack

Users A, B, C have RSA moduli n_{1}, n_{2}, n_{3}. Say $e=3$ and the moduli have no common divisors. Say, m is broadcasted to A, B, C. Having the ciphertexts:

$$
y_{A}=m^{3} \bmod n_{1}, \quad y_{B}=m^{3} \bmod n_{2}, \quad y_{C}=m^{3} \bmod n_{3}
$$

the attacker uses CRT to find the unique $x \in \mathbb{Z}_{n_{1} n_{2} n_{3}}$ such that

$$
\begin{cases}x \equiv y_{A} & \left(\bmod n_{1}\right) \\ x \equiv y_{B} & \left(\bmod n_{2}\right) \\ x \equiv y_{C} & \left(\bmod n_{3}\right)\end{cases}
$$

As $m<\min \left\{n_{1}, n_{2}, n_{3}\right\}$, then $m^{3}<n_{1} n_{2} n_{3}$, which means that m^{3} is also the solution of the congruences and hence $x=m^{3}$ by the uniqueness of the solution. The attacker just computes $m=\sqrt[3]{x}$

Homomorphity

RSA encryption has the following property:

$$
\begin{aligned}
\mathrm{E}\left(m_{1} m_{2}\right) & =\left(m_{1} m_{2}\right)^{e} \bmod n=m_{1}^{e} \cdot m_{2}^{e} \bmod n \\
& =\mathrm{E}\left(m_{1}\right) \cdot \mathrm{E}\left(m_{2}\right) \bmod n
\end{aligned}
$$

For example:

$$
\mathrm{E}(2 m)=\mathrm{E}(2) \cdot \mathrm{E}(m) \quad \bmod n,
$$

which means that given the ciphertext $\mathbf{E}(m)$, one can compute the ciphertext $\mathrm{E}(2 m)$ without using secret key.

Abusing the Homomorphity

Assume that a server has RSA public key (e, n).
Users send encrypted messages $\mathrm{E}(m)$ to the server, where m is assumed to be odd.

Otherwise (if m is even), the server replies with an error message.
Weakness: By communicating with the server, we can decrypt any ciphertext $\mathrm{E}(m)$.

Abusing the Homomorphity

By sending $\mathrm{E}(m)$ to the server, we learn if m is odd or even.
Compute $\mathrm{E}(2 m)=\mathrm{E}(2) \cdot \mathrm{E}(m)$ and send it to the server.
If $m<\frac{n}{2}$, then $2 m<n$ and as $2 m \bmod n$ is even, we get an error message.

If $\frac{n}{2} \leq m<n$, then $n \leq 2 m<2 n$ and as $2 m \bmod n=2 m-n$ is odd, we do not get error messages.

Hence, we learn if $m<\frac{n}{2}$.

Secure Encryption

Semantic security: Ciphertext C must not reveal any information about the plaintext M

The textbook RSA is not semantically secure
Example, encrypting yes/no votes. Given an encrypted vote

$$
C=v^{e} \bmod N
$$

an attacker can encrypt both votes and compare the results to C.
Random padding has to be applied before encryption

Bleichenbacher's Attack

The PKCS 1 padding looks like this:
02 | Random | 00 | Message
Say a server receives encrypted messages and returns an invalid ciphertext error message if the decrypted message has an incorrect padding

So, sending a random ciphertext C to the server, an attacker will know if the corresponding plaintext has 02 in the beginning

Bleichenbacher showed in 1998 that if an attacker who has access to such a server, can decrypt any ciphertext

Partial Key Exposure

Given an n-bit RSA modulus N, and $n / 4$ least significant bits of the secret modulus d, it is easy to compute d

Given an n-bit RSA modulus $N=p q$, and $n / 4$ least/most significant bits of p, the modulus N can be factored (Coppersmith 1996)

Timing Attacks

Let $d_{n} d_{n-1} \ldots d_{1} d_{0}$ be the bit-representation of d. The computation of M^{d} $\bmod N$ is performed as follows:

$$
\begin{aligned}
& z:=M, C:=1 \\
& \text { For } i=0 \ldots N-1 \text { do: } \\
& \quad \text { if } d_{i}=1 \text {, then } C:=C \cdot z \bmod N \\
& \quad z:=z^{2} \bmod N
\end{aligned}
$$

The attacker asks the smartcard to compute a large number of exponents, measures the times and reconstructs d using statistical analysis.

Random Faults in Hardware

Smartcard applications of RSA frequently use CRT to speed up $m^{d} \bmod n$ where $n=p q$:

$$
\begin{array}{rr}
d_{p} \leftarrow d \bmod p-1 & d_{q} \leftarrow d \bmod q-1 \\
C_{p} \leftarrow m^{d_{p}} \bmod p & C_{q} \leftarrow m^{d_{q}} \bmod q \\
C \leftarrow \beta q C_{p}+\alpha p C_{q} \bmod n,
\end{array}
$$

where $\alpha, \beta \in \mathbb{Z}$ are constants such that $\alpha p+\beta q=1$
Say, an error occurs when computing C_{q} and \underline{C} is the erroneous version of C. Then

$$
\underline{C}^{e} \equiv m \quad(\bmod p) \quad \underline{C}^{e} \not \equiv m \quad(\bmod q)
$$

Hence, attacker can compute $\operatorname{gcd}\left(n, \underline{C}^{e}-m\right)=p$ and factorize n

Shor's Factoring Attack on a Quantum Computer

Peter Shor showed in 1994, that quantum computers can find the period of a wide class of functions $f: \mathbb{Z} \rightarrow \mathbb{Z}_{2^{m}}$ in time $O\left(m^{2}\right)$.

By the period of f we mean the smallest positive integer λ, such that $f(x+\lambda)=f(x)$ for every x.
(1) Random $a \leftarrow \mathbb{Z}_{n}^{*}$ is chosen
(2) The order $r=\operatorname{ord}_{n}(a)$ of a is the period of $f(x)=a^{x} \bmod n$ that is found by a quantum computer with probability $\frac{1}{\ln n}$
(3) Using a and r a non-trivial $\sqrt{1}$ is found with probability $\frac{1}{2}$

In-Device Private Key Generation

Keys are generated inside smart-cards.
Pros: Improved trust model, compared to other generation options
Cons: Slow due to the small computational power

Current Practice in Prime Number Generation

- Random candidate p is chosen
- Trial division: It is ensured that p is not divisible by any members of a fixed set Π of small prime numbers
- Exponential tests, like the Fermat' test is applied:

$$
a^{p-1} \bmod p=1
$$

for a random $a \leftarrow\{2,3, \ldots, p-1\}$
The density of n-bit primes is approximately $\frac{1}{n}$.
Division is thousands of times faster than exponentiation.
Trial division eliminates bad candidates fast. Trial division diminishes the average number of exponential tests.

Fast-Prime Methods

Chooses candidates in a way that trial division is not needed.
Choose a first candidate a_{0} so that $a_{0} \bmod M=1$, where M is the product of all small primes in Π.

Choose the next candidates a_{k} by $a_{k} \leftarrow a_{0}+k M$.

Pros: Faster generation of prime numbers
Cons: Lower entropy of prime numbers

Output Anomalies of Prime Generators

The paper:
"The Million-Key Question - Investigating the Origins of RSA Public Keys" by Svenda, Nemec, Sekan, Kvasnovsky, Formanek, Komarek, and Matyas
analyses the output of several smart-card prime generators. Anomalies in the Infineon's output distribution were discovered.

Formula for the Infineon Primes

The paper:
"The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli." by Nemec, Sys, Svenda, Klinec, and Matyas.
revealed that the Infineon chip's prime numbers are in the form:

$$
p=65537^{a} \bmod M+k M
$$

where M is constant and the same for all chips.
For 2048-bit modulus N, M is the product of the first 126 primes. All public moduli N satisfy $\left(65537^{c}-N\right) \bmod M=0$ for some c.

Such c is found in microseconds by the Pohlig-Hellman algorithm
This test was disclosed by the authors in spring 2017, and reached Estonia in August 2017.

Naive Attack

Try all $\operatorname{ord}_{M}(65537)$ possible a-s and try to find k by Coppersmith's attack Here, $\operatorname{ord}_{M}(65537)$ is the order of 65537 in the multiplicative group \mathbb{Z}_{M}^{*} Naive search is infeasible: the number of a-s to examine is 2^{254}.

Making the Naive Attack Efficient

Main idea: Use a divisor M^{\prime} of M, such that $\operatorname{ord}_{M^{\prime}}(65537)$ is feasible, but still the number of bits in M^{\prime} is larger than 2048/4 (necessary for the Coppersmith's attack).

Then, the prime numbers are still expressible in the form:

$$
p=65537^{a^{\prime}} \bmod M^{\prime}+k^{\prime} M^{\prime}
$$

Authors found optimal M^{\prime} in terms of the overall attack time by brute force search combined with greedy heuristics.

Impact of the Attack

By using optimal M^{\prime}, the number of possible a-s is 2^{34} for 2048-bit RSA modulus
k is found in 200 ms on a desktop computer by using Coppersmith's algorithm

The total costs by key estimated by authors:

- 30000 EUR in Amazon cloud
- 1000 EUR for electricity, without taking hardware into account

Conclusions

Certified \neq secure: Though the Infineon chip was certified by Common Criteria, it does not mean it is secure against unknown attacks Vulnerabilities in soft- and hardware are inevitable

IT-Systems design/management must take potential unknown vulnerabilities into account

