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Table: Cayley tables for U(8) and U(12)

× 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

× 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

Many groups may appear to be different at first glance, but
can be shown to be the same by simple renaming of the
group elements.

1 7→ 1, 3 7→ 5, 5 7→ 7, 7 7→ 11

In such a case we say that groups are isomorphic.



Two groups (G,⊗) and (H, ◦) are isomorphic if there
exists a bijection ϕ : G → H such that the group operation
is preserved

ϕ(a ⊗ b) = ϕ(a) ◦ ϕ(b) .
for all a, b ∈ G.

If G is isomorphic to H, we write G ∼= H, and the map ϕ is
called an isomorphism.



Example 1
Let us show that Z4 ∼= ⟨i⟩, where ⟨i⟩ = {i,−1,−i, 1} is the
group of 4-th roots of unity. Define a map ϕ : Z4 → ⟨i⟩ by
ϕ : n 7→ in. The inverse map ψ : ⟨i⟩ → Zn is given by
ψ : in 7→ n.

The map ϕ : Zn → ⟨i⟩ is a bijection, since

(ψ ◦ ϕ)(n) = ψ(in) = n ,

(ϕ ◦ ψ)(in) = ϕ(n) = in .

To show that ϕ is an isomorphism, observe that for all
a, b ∈ Zn : ϕ(a + b) = ia+b = ia · ib = ϕ(a) · ϕ(b). Hence,
(Z4,+) ∼= (⟨i⟩, ·).



Example 2
The groups Z8 and Z12 cannot be isomorphic, since their
orders are different. However U(8) ∼= U(12) as was shown in
the first slide.

In fact, both of these groups are isomorphic to Z2 × Z2.

Table: Cayley table for Z2 × Z2.

+ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)



Abelian and nonabelian groups cannot be isomorphic.
Example 3
Even though the group of symmetries S3 and Z6 contain
the same number of elements, they are not isomorphic
because Z6 is abelian and S3 is nonabelian.

To demonstrate that this is the case, suppose that
ϕ : Z6 → S3 is an isomorphism. Let a, b ∈ S3 and ab ̸= ba.
Since ϕ is an isomorphism, there exist m, n ∈ Z6 such that
ϕ(m) = a and ϕ(n) = b. However,

ab = ϕ(m)ϕ(n) = ϕ(m + n) = ϕ(n + m) = ϕ(n)ϕ(m) = ba ,

which contradicts the fact that a and b do not commute.



Let ϕ : G → H be isomorphism of two groups. Then the
following statements are true:

1. ϕ−1 : H → G is an isomorphism.
2. |G| = |H|.
3. If G is abelian, then H is abelian
4. If G is cyclic, then H is cyclic
5. If G has a subgroup of order n, then H has a subgroup

of order n.



Theorem 1
All cyclic groups of infinite order are isomorphic to Z.

Proof.
Let G be a cyclic group with infinite order and suppose
that G = ⟨a⟩. Define a map ϕ : Z → G by ϕ : n 7→ an. Then

ϕ(m + n) = am+n = aman = ϕ(m)ϕ(n) .

It can be seen that ϕ is surjective, since any element in G
can be written as an for some integer n and ϕ(n) = an. ϕ is
injective, since am = an =⇒ m = n. Hence, ϕ is a
bijection.



Theorem 2
If G is a cyclic group of order n, then G ∼= Zn.

Proof.
Let G be a cyclic group of order n generated by a and
define a map φ : Zn → G by φ : k 7→ ak, where 0 ⩽ k ⩽ n.
Define an inverse map ψ : G → Zn by ψ : x 7→ n : x = an.
Then

(ψ ◦ φ)(x) = ψ(n) = an = x ,

(φ ◦ ψ)(x) = ϕ(ax) = x .

Hence, φ is a bijection. To show that φ is an isomorphism,
observe that it preserves group operations,

φ(x + y) = ax+y = ax · ay = φ(a) · φ(b) .

Hence, G ∼= Zn.



Theorem 3
The isomorphism of groups determines an equivalence
relation on the class of all groups.

G ∼ H ⇐⇒ G ∼= H .

Proof.
We can show that the isomorphism is an equivalence
relation. It is clearly reflexive G ∼= G, it is symmetric
G ∼= H =⇒ H ∼= G, and transitive
G ∼= H,H ∼= T =⇒ G ∼= T. Hence, isomorphism is an
equivalence relation on the class of all groups.



The main goal of group theory is to classify all groups.
However, it makes sense to consider to groups to be the
same if they are isomorphic.

Hence, the main goal of group theory is to classify all
groups up to an isomorphism.

One important theorem in group theory is the Cayley
theorem.
Theorem 4 (Cayley)
Every group is isomorphic to a group of permutations.

Proof.
Omitted, since this course does not cover the topic of
permutation groups.



Definition 1 (External Direct Product)
If (G,⊙) and (H, ◦) are groups, then their Cartesian
product is a group (G × H, •) under operation

(g1, h1) • (g2, h2) = (g1 ⊙ g2, h1 ◦ h2) .

The group G×H is called the external direct product of
G and H.

For the sake of clarity we write
(g1, h1)(g2, h2) = (g1g2, h1h2) .

We may compose the direct product of more than just 2

groups:
n∏

i=1
Gi = G1 × G2 × . . .× Gn .



Example 4
The group (R,+) is the group of real numbers under
addition. The Cartesian product R2 = R× R is also a
group, in which the group operation is

(a, b) + (c, d) = (a + c, b + d) ,

the identity is (0, 0), and the inverse of every element (a, b)
is (−a,−b).



Consider

Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)} .

Although Z2 ×Z2 and Z4 both contain 4 elements, it is easy
to see that they are not isomorphic, since for every element
(a, b) ∈ Z2 × Z2, (a, b) + (a, b) = (0, 0), but Z4 is cyclic.

Unlike that of Z2 × Z2 and Z4, it is true that Z2 × Z3 ∼= Z6.
We only need to show that Z2 × Z3 is cyclic. It is easy to
see that (1, 1) generates Z2 × Z3.



Theorem 5
Let (g, h) ∈ G × H. If g and h have finite orders r and s
respectively, then the order of (g, h) in G × H is the least
common multiple of r and s.

Proof.
Suppose that m is the least common multiple of r and s,
and let n = |(g, h)|. Then

(g, h)m = (gm, hm) = (eG, eH) , (g, h)n = (gn, hn) = (eG, eH) .

By the first equation, m must be a multiple of n, since n is
the least integer such that (g, h)n = (eG, eH) by definition of
the order of element in a group. And so, n ⩽ m. However,
by the second equation, both r and s must divide n,
therefore n is a common multiple of r and s. Since m is the
least common multiple of r and s, m ⩽ n. Consequently,
m = n.



Theorem 6
Zm × Zn ∼= Zmn iff gcd(m, n) = 1.

Proof.
First, we show that gcd(m, n) = d > 1, then Zm × Zn
cannot be cyclic. Since mn/d is a multiple of both m and n,
for any element (a, b) ∈ Zm × Zn,

(a, b) + (a, b) + . . .+ (a, b)︸ ︷︷ ︸
mn/d times

= (0, 0) .

Therefore, no (a, b) can generate all of Zm × Zn, and hence
if Zm × Zn ∼= Zmn, then gcd(m, n) = 1.

Assume now that gcd(m, n) = 1. If |a| = m and |b| = n,
then by Theorem 5, |(a, b)| = lcm(m, n) = mn, and it
generates Zm × Zn. Hence, Zmn ∼= Zm × Zn.



Theorem 7
Let G and H be groups. The set G × H is a group under the
operation (g1, h1)(g2, h2) = (g1g2, h1h2), where g1, g2 ∈ G and
h1h2 ∈ H.

Proof.
By closure of group operations in G and H, clearly the
operation defined above is closed. The associativity of this
operation follows from the associativity of operations in G
and H. If eG and eH are identities in G and H, then (eg, eH)
is the identity in G × H. The inverse of (g, h) ∈ G × H is
(g, h)−1 = (g−1, h−1).



From Theorem 7 it follows that
Corollary 1
Let n1, . . . , nk be positive integers. Then

k∏
i=1

Zni
∼= Zn1···nk

iff gcd(ni, nj) = 1 for i ̸= j.
Corollary 2
If m = pe1

1 · · · pek
k where pis are distinct primes, then

Zm ∼= Zpe1
1
× · · · × Zpek

k
.

Proof.
Since gcd(pei

i , p
ej
j ) = 1 for i ̸= j, the proof follows from

Corollary 1.



Definition 2 (Internal Direct Product)
Let G be a group with subgroups H and K satisfying the
following conditions

1. G = HK = {hk : h ∈ H, k ∈ K}
2. H ∩ K = {e}
3. H and K are normal subgroups, i.e., hk = kh for all

k ∈ K and h ∈ H
Then G is the internal direct product of H and K.

Example 5
The group U(8) is the external direct product of H = {1, 3}
and K = {1, 5}.



Theorem 8
Let G be the internal direct product of subgroups H and K.
Then G ∼= H × K.

Proof.
Since G is an internal direct product, we can write every
element g ∈ G as g = hk for some h ∈ H and some k ∈ K.
Define a map ϕ : G → H × K by ϕ(g) = (h, k).
First, we need to show that ϕ is a well-defined map, that is,
h and k are uniquely determined by g. Suppose that
g = hk = h′k′. Then h−1h′ = k(k′)−1 in both H and K, so it
must be the identity, since the inner direct product requires
that H ∩ K = {e}. Therefore, h = h′ and k = k′ which
proves that ϕ is indeed well-defined.

The proof continues in the next slide…



Theorem 8
Let G be the internal direct product of subgroups H and K.
Then G ∼= H × K.

Proof.
To show that ϕ preserves the group operation, let
g1 = h1k1, and g2 = h2k2. Then

ϕ(g1g2) = ϕ(h1k1h2k2)

= ϕ(h1h2k1k2)

= (h1h2, k1k2)

= (h1, k1)(h2, k2)

= ϕ(g1)ϕ(g2) .

The proof continues on the next slide…



Theorem 8
Let G be the internal direct product of subgroups H and K.
Then G ∼= H × K.

Proof.
Define an inverse map ϕ−1 : H × K → G by ϕ : (h, k) 7→ g,
where g = hk.

(ϕ−1 ◦ ϕ)(g) = ϕ−1(h, k) = g ,

(ϕ ◦ ϕ−1)(h, k) = ϕ(g) = (h, k) .

Hence, ϕ is a bijection and since it preserves the group
operation, it is an isomorphism.



Example 6
Group U(8) is an internal direct product of its subgroups

H = {1, 3}
K = {1, 5}

It can be seen that

HK = {1, 3, 5, 7} = U(8)
H ∩ K = {1}
∀k ∈ K , ∀h ∈ H : hk = kh
3 · 5 = 5 · 3 = 7 ∈ U(8)




