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Distance and/or Similarity

Let x and y are two elements (objects). Define measure of
distance/similarity between x and y



Distance ?

This is the distance 
used to compute 
the price of a taxi 
ride

Actual distance 
between the 
starting end 
ending points of 
your journey 



Distance ?

Yo
u

ar
e 

h
e

re



Metric (some times referred as distance function)

Definition
A function d : X ×X → R is called metric if for any elements x, y
and z of X the following conditions are satisfied.

1. Non-negativity or separation axiom

d(x, y) ≥ 0

2. Identity of indiscernibles, or coincidence axiom

d(x, y) = 0⇔ x = y

3. Symmetry
d(x, y) = d(y, x)

4. Subadditivity or triangle inequality)

d(x, z) ≤ d(x, y) + d(y, z)



Examples: distances in the Euclidean space 1

Do you remember what Euclidean space is?

I Euclidean distance

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

I Manhattan distance also referred as city block distance or taxicab
distance

d(x, y) =

n∑
i=1

| xi − yi |

I Chebyshev distance

d(x, y) = lim
k→∞

( n∑
i=1

| xi − yi |k
) 1

k

= max
i

(
| xi − yi |

)



Examples 2

I Mahalanobis distance

S(x, y) =
√

(x− y)TC−1(x− y)

where C is the covariance matrix. Takes into account impact of
data distribution.

I Cosine distance Cosine similarity is the measure of the angle
between two vectors

Sc(x, y) =
x · y
‖x‖‖y‖

Usually used in high dimensional positive spaces, ranges from −1 to
1. Cosine distance is defined as follows

SC(x, y) = 1− Sc(x, y)



Lp norms

I The real valued function f defined in a vector space V over
the subfield F is called a norm if for any a ∈ F and all
u, v ∈ V it satisfies following three conditions

I f(av) =| a | f(v)
I f(u+ v) ≤ f(u) + f(v)
I f(v) = 0⇒ v = 0

I Lp is defined as follows

S(X̄Ȳ ) =
( d∑
i=1

| xi − yi |p
) 1

p

I In case of p = 1 we are dealing with already known to you
Manhattan distance. In case of p = 2 Euclidean.



Examples 3: Distances between strings

I Levenshtein or SED distance. SED - minimal number of single
-charter edits required to change one string into another. Edit
operations are as follows:

I insertions
I deletions
I substitutions

I SED(delta, delata)=1 delete ”a” or SED(kitten,sitting)=3 :
substitute ”k” with ”s”,substitute ”e” with ”i”, insert ”g”.

I Hamming distance Similar to Levenshtein but with substitution
operation only. Frequently used with categorical and binary data.



k-nearest neighbour (k-NN) classification

I Let N be a labeled set of points belonging to c different
classes such that

c∑
i=1

Ni = N

I Classification of a given point x
I Find k - nearest points to the point x.
I Assign x the majority label of neighbouring (k-nearest) points
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(k-NN) classification

I k-NN is a supervised learning method

I it is nonparametric learning method (number of the
parameters grows with the amount of data)

I k-NN is a memory (or instance) -based learning, (algorithm
memorizes the training data).

I k is the hyperparameter.



(k-NN) classification

I For an arbitrary point x the probability to belong to the class
c is given by

p(y = c | x,D, k) =
1

k

∑
i∈Nk(x,D)

I(yi = c)

here Nk(x,D) denotes the indexes of the k nearest points to x
in D
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Decision boundary

I Decision boundary or decision surface (the lines between
different colors on the previous slide) is a ”hypersurface” that
partition the vector space in accordance to two classes it
separates.

I Not necessarly surface in the strict sense of this word.
I Decision boundaries characterize the complexity of the model

I Decision boundary is too ”complex” - overfitting.
I Decision boundary is too ”smooth” - underfitting.

I the value k is used to control the complexity of the decision
boundary

I Cross-validation may be used to select value k



Data normalization
Normalization - is the process of adjusting values measured on
different scales to a common scale. There are different ways to
normalize the data:

I Standard score Works well for normally distributed data. For
each dimension j compute

x′i,j =
xi,j−µ̄j
σj

.

I Feature scaling used to bring all values into the range [0, 1].

x′ =
x−min(x)

max(x)−min(x)

may be generalized to bring the values in to and closed
interval [a, b]

x′ = a+

(
x−min(x)

)
(b− a)

max(x)−min(x)

Note x′ denotes normalization, not to be confused with derivative.



Impact of High Dimensionality (Curse of Dimensionality)
Curse of dimensionality - term introduced by Richard Bellman. Referred
to the phenomenon of efficiency loss by distance based data-mining
methods. Let us consider the following example.

I Consider the unit cube in d - dimensional space, with one corner at
the origin.

I What is the Manhattan distance from the arbitrary chosen point
inside the cube to the origin?

S(0̄, Ȳ ) =

d∑
i=1

(Yi − 0)

Note that Yi is random variable in [0, 1]

I The result is random variable with a mean µ = d/2 and standard
deviation σ =

√
d/12

I The ratio of the variation in the distances to the mean value is
referred as contrast

G(d) =
Smax − Smin

µ
=

√
12

d


