- 1. Given a transition system $M = (S, S_0, L, R)$ (in the figure),
 - i) complete the specification of M by substituting "..." with right symbols according to the figure;

- ii) Specify the transition relation $R \equiv \bigvee_{i,j} R_{i,j}$ of model M in symbolic form where $R_{i,j}$ specifies an individual transition, e.g. $R_{2,1} \equiv \neg p \land q \land p' \land \neg q'$. Try to simplify R if possible.
- iii) Find the states of M where following CTL formulas hold:
- 2. Express the formulas below using minimal set of CTL operators EX, EG, EU and ¬:
 - i. AX(p)
 - ii. EF(p)
 - iii. $\neg AG(p)$
- 3. Given a symbolic state: $\varphi = x_1 \land \neg x_2$ and transition relation $R = x_1 \land x_2 \land \neg x_1' \lor \neg x_2'$. Find symbolic pre-image $EX(\varphi)$ of φ . For this, use the definition $EX(\varphi) = \exists V' \ (R \land \varphi \ [V' / V])$ and \exists -quantifier elimination for simplification.
- 4. Draw a cyclic Uppaal process with total duration within interval [d1, d2] and which is started with initial synchronization via channel ch.