IDK1531 Course Project

Your task is to create file encoder/decoder using Huffman statistical
compression algorithm.

Huffman coding is a lossless data compression algorithm, which assigns
variable-length prefix-free codes to input characters such that more frequent
characters get shorter codes, and the less frequent characters get larger
codes.

1 Input and Output

The program compress and decompress files, and accepts the following com-
mand line options:

—i specifies the input file

—o specifies the output file

Read file inputFile as input, compress it and write the compressed version
t0 outputFile.

mysolution —i inputFile —o outputFile

The same can be accomplished by using only the —o modifier as follows:

mysolution —o outputFile inputFile

The solution must be able to work with character streams and work with
stdin/stdout streams.

mysolution < inputFile > outputFile

The program must return 0 upon successful completion and a nonzero
exit code otherwise.

The output file contains a header and the compressed input file. The
header is a compact representation of a Huffman codebook, allowing to
reconstruct the codebook from this representation using canonical Huffman
codes.

2 Huffman Codebook

Suppose we have an input file containing 33 bytes:

0xA 0xB 0xA 0xC 0xA 0xD 0xC 0xD 0xA 0xA 0xD 0xA 0xA 0xA 0xC
0xA 0xA 0xC 0xC 0xD 0xC 0xD 0xD 0xC 0xD 0xC 0xC 0xC 0xC 0xC
0xC 0xC 0xC

2.1 Compact Representation of the Huffman Codebook

The first step in the encoding process is to create a Huffman codebook,
corresponding to a given input. This is accomplished in a series of 3 steps.
2.1.1 Calculate the frequency map

First, you need to calculate the frequencies of every byte in the input file.
In the case of our example, the frequency map is the following.

Byte ‘OXA 0xB 0xD 0xC
Frequency ‘ 10 1 7 15

2.1.2 Construct the Huffman Tree

The next step involves constructing a Huffman tree from the frequency map.
A Huffman tree is a binary tree, in which the frequency of the left child is
less than the frequency of the right child.

A Huffman tree may be constructed using a heap structure, which sorts
tree nodes by their frequency. In the beginning, for every byte in an input
file, construct a corresponding tree node, containing the byte value and its
frequency. These will be leaf nodes in your tree. Push all the leaf nodes into
the heap.

Table 1: Step 1.

Node Frequency

0xB 1
0xD 7
0xA 10
0xC 15

Until there is only one node left in the heap, proceed as follows:
1. Pop two elements from the heap (the ones with smallest frequencies)

2. Construct a new tree node with the two elements you just popped
from the heap as its children, with the node having less frequency
being the left-hand child. The frequency of this tree node is the sum
of the frequencies of its children.

3. Push the newly created tree node into the heap.

4. Repeat until there is just one tree node left in the heap.

(a) Step 2. (b) Step 3.
Node Frequency Node Frequency

(OXB,OXD) 8 ((OXB,OXD),OXA) 18

0xA 10 0xC 15

0xC 15

(c) Step 4.
Node Frequency
(0xC,((0xB,0xD),0xA)) 33

Once the process is finished, there is just one element in the heap, which is
the root node of the tree

wAY
/N,
AN,

2.1.3 Group symbols into bins by code length

The code length of a specific symbol is the level at which the symbol resides
in a Huffman tree. The level of the root node is 0. Sort entries by code
length, and sort the symbols, sharing the same code length, by value.

Code length Symbols

1 0xC
2 0xA
3 0xB, 0xD

2.1.4 Huffman header

As a last step, construct the Huffman header, which is the compact rep-
resentation of the Huffman codebook. A Huffman header consists of two
parts: a) the number of symbols with each code length — the length table,
and b) symbols themselves — the symbols’ table.

Given the table of symbols grouped by code lengths into bins as shown
in example of the previous task, the Huffman header looks as follows:

1, 1, 2 :: 0xC, 0xA, 0xB, 0xD

It means that:

e there is one code of length 1 for symbol 0xC.

e there is one code of length 2 for symbol 0xA.

e there are two codes of length 3 for symbols 0xB and 0xD

Note that the comas and the :: symbol are for decorative purposes only,
and have no meaning in general.

The Huffman header is the compact representation of the Huffman code-
book, and is written into the compressed file, followed by the compressed
contents of the file.

2.2 Canonical Huffman Codebook

The canonical Huffman codebook is constructed from the Huffman header
as follows.

1. Start on row 0 of the length table with first_code_on_row=0 and first_index_on_row=0
and write them out.

2. The next value for first_code_on_row = first_code_on_row + number of codes
shifted by 1 to the left.

3. The next value for first index on row = first index on row + number of codes.

4. If there are more rows in the length table, go to step 2 and repeat.

The Huffman codebook corresponding to the header
1, 1, 2 :: 0xC, 0xA, 0xB, 0xD

is the following:

Table 3: Huffman Codebook

First code on row First index on row Number of codes Symbols ‘

0 0 1 0xC
10 1 1 0xA
110 2 2 0xB, 0xD

This table means that symbol 0xC is encoded as a single bit 0, symbol
0xA is encoded as two bits 10, symbol 0xB is encoded as 110, and 0xD is
encoded as 111. The codes are consecutive within a single row.

3 Encoding

The encoding process is simply transforming every symbol into its binary
representation in accordance with the codebook.
Assume we wish to encode a sequence of bytes

0xA 0xB 0xC 0xD
using a codebook from Table 3.

The bitstring corresponding to the encoded sequence is 101100111, and
the contents of the compressed file are

[Huffman header] 101100111

4 Decoding
Assume we have a compressed file
[Huffman header]| 101100111

The decoding process is done in two steps. First, we reconstruct the Huffman
codebook from the Huffman header, and then decode the payload according
to the codebook.

4.1 Reconstructing the Huffman codebook

Suppose we have reconstructed the Huffman header
1, 1, 2 :: 0xC, OxA, 0xB, 0xD

from the compressed file, and from the Huffman header we have recon-
structed the Huffman codebook following the procedures described above.

First code on row First index on row Number of codes Symbols ‘

0 0 1 0xC
10 1 1 OxA
110 2 2 0xB, 0xD

4.2 Decoding

To decode the compressed file, proceed as follows.

1. Start on row 0 of the length table with first_code_on_row=0 and first_index_on_row=0
and write them out.

2. Fetch one bit from the bitstream and write it into fetched bits.

3. If fethed bits — first_code _on_row < number_of codes, then the index of
the symbol index is fethed bits — first_code on_ row -+ first_index on_ row.
Output the symbol.

4. Add number_of codes to first_code_on_row shifted by 1 to the left.
5. Add number of codes to first index on row.
6. Subtract first code on row from fetched bits and first code on row.

7. Go to step 2 for the next row of the length table.

Suppose we want to decompress payload 0x01 0x66, which in binary no-

tation corresponds to a bitstring

101100110

We start fetching bits from the bitstring.

Fetched | First Fetched | First Number | Action
bits code on | - First index on | of codes
row row

1 0 1 0 1 Continue to the
next row

10 10 0 1 1 Index =0+1=1.
Output 0xA.

1 0 1 0 1 Continue to the
next row.

11 10 1 1 1 Continue to the
next row

110 110 0 2 2 Index =0+2 = 2.
Output 0x0B.

0 0 0 0 1 Index =0+0=0.
Output 0xC.

1 0 1 0 1 Continue to the
next row.

11 10 1 1 1 Continue to the
next row

111 110 1 2 2 Index =1+2 = 3.

Output 0x0D.

Write the decompressed sequence 0xA 0xB 0xC 0xD to the output file.

