Methods of Knowledge Based
Software Development

Tanel Tammet, Juhan Ernits
Department of Computer Science
Tallinn University of Technology
tanel.tammet@ttu.ee, juhan.ernits@ttu.ee
2015

mailto:tanel.tammet@ttu.ee
mailto:juhan.ernits@ttu.ee

Search strategies

* A search strategy is defined by picking the order of node
expansion

e Strategies are evaluated along the following dimensions:
— completeness: does it always find a solution if one exists?
— time complexity: number of nodes generated
— space complexity: maximum number of nodes in memory
— optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be oo)

Uninformed search strategies

Uninformed search strategies use only the
information available in the problem
definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

terative deepening search

Breadth-first search

* Expand shallowest unexpanded node
* I[mplementation:

— frontier is a FIFO queue, i.e., new successors go at
end

>

Breadth-first search

* Expand shallowest unexpanded node
* I[mplementation:

— frontier is a FIFO queue, i.e., new successors go at

end
(4,
>(5 e

Breadth-first search

* Expand shallowest unexpanded node
* I[mplementation:

— frontier is a FIFO queue, i.e., new successors go at

end
(A
(B, D> (S
Lo &

Breadth-first search

* Expand shallowest unexpanded node
* I[mplementation:

— frontier is a FIFO queue, i.e., new successors go at

end
(A,
(B, G
;@ © O @

Properties of breadth-first search

Complete?
Time?
Space?
Optimal?

Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b%+b3+... +b? = O(bY)
Space? O(b?) (keeps every node in memory)

Optimal? Yes

Space is the bigger problem (more than time)

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
— frontier = queue ordered by path cost

Complete?

Time

Space?

Optimal?

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
— frontier = queue ordered by path cost
Complete? Yes, if step cost > €

Time? # of nodes with g < cost of optimal solution, O(bceina(c”/
¢)) where C is the cost of the optimal solution

Space? # of nodes with g < cost of optimal solution,
0) (bceiling(C */ e))

Optimal? Yes — nodes expanded in increasing order of g(n)
Equivalent to breadth-first if step costs all equal

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Q.

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

* Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

D
())

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Depth-first search

 Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Properties of depth-first search

Complete?

Time

Space?

Optimal?

Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces
with loops

— Modify to avoid repeated states along path
- complete in finite spaces

Time? O(b™): terrible if m is much larger than d

— but if solutions are dense, may be much faster than
breadth-first

Space? O(bm), i.e., linear space!
Optimal? No

Depth-limited search

= depth-first search with depth limit /,
i.e., nodes at depth / have no successors

* Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail / cutoff
cutoff-occurred? « false
if GOAL-TEST[problem](STATE[node]) then return SoLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result + RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? + true
else if result + faidure then return result
if cutoff-occurred? then return cutoff else return failure

D

h

Depth limited search in Python

depth limited search(problem, limit=50):
"[Fig. 3.17]"
def recursive dls(node, problem, 1limit):
1f problem.goal test (node.state):
return node
=11f node.depth == limit:
return 'cutoff'

P Oy .

cutoff occurred = False

—

for child in node.expand (problem) :
result = recursive dls(child, problem, limit)

1f result == "cutoff':
cutoff occurred = True
21if result is not None:
return result
return if_{cutoff_occurred, 'cutoff', None)

Body of depth limited search:
return recursive dls (Node (problem.initial), problem, limit)

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure

inputs: problem, a problem

for depth< 0 to oo do

result +— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

N
(]

iterative deepening search (problem) :
"[Fig. 3.18]"

for depth 1n xrange(sys.maxint):
result = depth limited search(problem, depth)

1f result != 'cutoff':
return result

Iterative deepening search [=0

Iterative deepening search [=1

Limit=1 D (@)

Iterative deepening search [=2

(5]

KD SN

..

Iterative deepening search [=3

24
T A]
(0 47 0 G

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d
with branching factor b:

Ny =b0+b"+b2+...+b%2+p%1 + pd

Number o fnodes enerated in an iterative deepening search to
depth d with branching factor b

Nps = (d+1)b% + d b? + (d- 1)b2 .+ 3bd-2 +2pd-1 + 1hd
Forb=10,d =5,

Np,=1+10+ 100 + 1,000 + 10,000 + 100,000 = 111,111

N5 = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead =(123,456-111,111)/111,111=11%

Properties of iterative deepening
search

Complete? Yes

Time? (d+1)b° + d b + (d-1)b? + ... + b? = O(b?)

Space? O(bd)

Optimal? Yes, if step cost =1

Bidirectional search

* Run two simultaneous searches in parallel

e |deally b¥2 + p/2 << p@

— But there has to be an intersection check if the
frontiers intersect.

Summary of algorithms

Criterion Breadth- Uniform- Depth-first Depth- Iterative Bidirection
first cost limited deepening al (if
applicable)
Complete? | Yes Yes No No Yes Yes
Time O(bd) O(b /s o(bm) O(b') O(bd) 0(b%2)
Space 0(bd) O(b™c*/zl) O(bm) O(bl) 0(bd) 0(b%/?)
Optimal? Yes Yes No No No Yes

Repeated states

* Failure to detect repeated states can turn a
linear problem into an exponential one!

Summary

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

Acknowledgements

* This set of slides contains several prepared by
Hwee Tou Ng and Stuart Russell, available
from the AIMA pages.

http://aima.cs.berkeley.edu/instructors.html

