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-
RSA cryptosystem

In 1977, Ronald Rivest, Adi Shamir
and Leonard Adleman proposed the
following trapdoor cryptosystem:

o Private key: Two large random prime numbers p and ¢
o Public key: Modulusn =p-q

Let e,d € Z () such that e-d =1 (mod ¢(n)), where
o(n) = (p—1)(qg— 1) is the Euler’s function

o Encryption y = Ep, c(z) = ¢ mod n
o Decryption D, 4(y) = y? mod n =z
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Questions

o Are E and D efficiently computable?
o Why does the decryption identity D,, 4(Ey, c(z)) = x hold?

o How to find large random prime numbers?
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-
Efficient Exponentiation: Square and Multiply

For efficiently computing ¢ mod n we use the binary expansion:

€:€m'2m+€m_1-2m71+...—|—€1-21—|—€0-20 ,

where é,,,...,ep € {0,1}. We use the following computational scheme:
xem~2m+...+60‘20 — xem-Zm _wem_1~2m*1 .. xeo-ZO
my Em, m—1Y) ém—1 0 €0
= (@) ()T ()
0 m .
where the hyper-powers 22 , ..., 22" are computed by using repeated
squaring

2
K k—1
$2 == <$2 )
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-
Euler's Theorem and Decryption ldentity

Theorem (Euler)
If ged(z,n) = 1, then 9™ =1 (mod n). J

o We use general group theory to prove Euler’'s theorem

o By Euler's theorem, if z is invertible modulo n then

k
(:Ee)d = g¢% = pltke() — . (x“’(”)> =z-1F=z (mod n) .
which means that the decryption identity of RSA holds for invertible x.

o Later, we show that decryption identity also holds for non-invertible x

Exercise: Show that finding a non-invertible x modulo n = pq is equivalent
to factoring n.
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Groups

Group consists of a set G and a binary operation - which is:
o Associative: a-(b-c) = (a-b)-c

o With a unit: Thereis e € G such that z-e=¢-x = x for every x € G
1

o Invertible: Every a € G has an inverse a~! € G, such thata-a=! =e¢

Examples:
o (Z,+)

0 (Zp,+), where + denotes addition modulo n
o (Z,-), where Z} = {a € Zy,: gcd(a,n) =1} and - is multiplication

modulo n
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-
Subgroups

A subset H C G of a group (G, ) is a subgroup if (H,-) is a group.

For example, the set 2Z = {.. —2,0,2,4,...} of even numbers is a
subgroup of the additive group (Z, +) of integers.

Exercise: Show that for H C G being a subgroup of (G, -) it is necessary
and sufficient that H is closed under multiplication and inverses.

Exercise: Show that for H C G being a subgroup of finite (G,-) it is
necessary and sufficient that H is closed under multiplication.

Not true for infinite groups: Although the subset N = {0,1,2,...} of Z is
closed under addition, N is not a subgroup of (Z,+).
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Order of an Element of a Finite Group

Theorem (Order)

For any element g € G of a finite group G there exists n € N such that
g" =eandg,g? g, ...,g" are all different. Such n is called the order of
g in G and is denoted by ord(g).

Proof.
As G is finite there is n € N such that ¢"*! € {g,¢%,¢°,...,9"}. Let n
be the smallest such number, which also means that g, g%, ¢>, ..., g" are

all different. Hence, gn+1 =g (and gt = 6), because if gn+1 — gH—k for
0 <k <n, then g" = g¥ € {g9,¢%,¢%,...,9" '}, contradicting the
minimality of n. O

.

The set {g,9%, g>,...,9"} is a subgroup denoted by (g) and called the
subgroup generated by g. Note that |(g)|= ord(g) and g°rd) = ¢.

Ahto Buldas, Aleksandr Lenin RSA Cryptosystem Oct 21, 2019 8/25



Lagrange's Theorem

Theorem (Lagrange)

If H is a subgroup of a finite group G, then % is an

integer.

Proof.

Let H = {hi,...,hn}. Forany g € G, let gH = {gh1,...,ghm}, which
is called the co-set of g. As H has the unit, g € gH and hence every
g € G is in a co-set. Note that eH = H and hence H is itself a co-set.

If gh; = gh;, then h; = h; and hence all cosets are of equal size |gH|=|H|.
If gH Ng'H # (), then we have gH = ¢’H. Indeed, if gh; = a = ¢'h;,
then for every k, we have ghy, = gh;h; 'hy, = ah; 'hy = g'hjh; ' hy € ¢ H
and hence gH C ¢'H, which due to |gH|=|¢'H| implies gH = ¢'H.
Therefore, co-sets split G into a finite number of pieces of size |H]|. O

v
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Exponentiation Theorem and Proof of Euler's Theorem

Theorem (Exponentiation)

If G is a finite group and g € G, then ¢/¢! = e.

Proof.

From Lagrange's theorem, it follows that ||< >|| =k € N and hence
glGl = gl@lk — (g|<g)|) =1k —¢ . O

Corollary (Euler's Theorem)
If ged(z,n) = 1, then 9™ mod n = 1

Proof.
The set Z) = {x € Z,,: ged(z,n) = 1} is a group with size ¢(n). O

v
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Fermat's Theorem and Primality Test

Corollary (Fermat’s Theorem)

If p is prime and 0 < x < p, then xP~! =1 (mod p).

Fermat’s primality test (Is n prime?): Pick random z < {1,...,n — 1}
and compute ¢ = 2"~ mod n.
o If ¢ # 1, then by Fermat's theorem, n is not prime

olf ¢ =1, then repeat the test
o If test is repeated k times, we stop and claim that n is prime

Question: How reliable is Fermat's test?
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Pseudo-Primes to Base b

If n is composite and "' = 1 (mod n), then n is said to be
pseudo-prime to base b.

Let H, = {b: b€ Z, b" 1 =1 (mod n)}, i.e. H, is the set of all
invertible bases in Z,-s, to which n is pseudo-prime.

Theorem
H,, is a subgroup of the multiplicative group Zy,.

Proof.

olf a,b € Hy, then (ab)" ! =a" 1. b""1 =1 (mod n). Hence, ab € H,.
o1le€ H,, because 1" =1.

olfa € H, and ab =1 (mod n), then

yl=gn gl = (ab)" 1 =11 =1 (mod n). O

v
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Carmichael Numbers and the Reliability of Fermat’ Test

Definition (Carmichael number)

any composite n with H,, = Z}. The smallest Carmichael
number is 561.

Theorem

If n is composite but not a Carmichael number, then |H,|< @ = Tn) .
Proof.

From H, # Z} and Lagrange's thm.: 1 < ||%I || € N. Thus, ‘%"l‘ >2. 0O

Corollary: For composite but not Carmichael numbers the Fermat’s test
fails with probability < % and the k-time test with probability < 2%
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How many Carmichael numbers are there?

Theorem (Alford, Granville, Pomerance; 1994)

Let C(n) be the number of Carmichael numbers in the range [0...n]. Then
C(n) > n*/7. Hence, there are infinitely many Carmichael numbers.

Corollary: Fermat's test is not completely trustworthy even for big
numbers.
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N
Miller-Rabin’s test

o Choose a random a < {1,...,n — 1}.

o If ged(a,n) # 1, then output composite.

oLet n—1=2F.m, where m is odd.

olf a™ mod n = 1 then output prime.

olf a™? = —1 (mod n) forani=0...k — 1, then output prime.

o Otherwise, output composite.

Theorem

If n is prime, then Miller-Rabin’s test outputs prime.

. . . . e 1
If n is composite, then the test outputs composite with probability > 3.
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

If ged(p, q) = 1 then the rings Z,q and Z, x Z, are isomorphic.

Proof.

Define f: Zpq — Zy, X Zg so that f(z) = (x mod p,z mod ¢q). Obviously,
[ preserves the ring operations. As |Zyq|=|Z, x Z/, it remains to show
that f is injective. For that, we define a mapping g: Z, x Zq — Zpq SO
that g(u,v) = (apv + Bqu) mod pq, where o, f € Z and ap + Bq = 1.
Therefore, if x € Z,q, v mod p = x — kp, and z mod ¢ = = — {g, then

g(f(x)) = gz —kp,x—Lq) = (ap(x — Lq) + Bq(z — kp)) mod pq
= (apz + Bz — pg(al + k)) mod pq
= (apr + Bqx) mod pg = z(ap + Bq) mod pg =z .

O

V.
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-
Corollary 1: RSA Decryption ldentity

Theorem (RSA decryption identity)
Ife-d=1 (mod ¢(pq)), where p # q are primes, then for every x € Zp,:

=1 (mod pq) .

Proof.
As : Zpy = 7y x Ly, it suffices to prove (u,v)® = (u,v) in Z, x Zq. As
(0,0)°d = (0,0), we may assume u,v > 0. Hence, by Fermat's theorem:

(u,v)e‘i = (ued mod p, v* mod ¢q) = (qu‘p(pq) mod p, v HF¢(PD) med q)
= (u- [PV mod p,v - [pFPY])97! mod ¢)
=1 =1
= (U, ’U)
L]

v
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-
Corollary 2: Solving Equations

If gcd(p, q¢) = 1, then for every u € Z,, and v € Z, the system

r modp = u
r modgq = w

has one and only one solution in the interval [0,1,2,...,pg — 2, pq — 1].

Example. Find all solutions x in the interval [0...20]:

¥

Solution. As (=2)-341-7 =1, from the proof of Chinese Remainder
theorem, it follows that z =724 (—2) - 3-6 = 20 (mod 21), which
implies that « = 20 is the only solution in [0...20].

2 (mod 3)
6 (mod 7).
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Corollary 3: Square Roots of 1

Theorem

If p,q are primes such that 3 < p < q, then the unit 1 € Z,, has exactly 4
different square roots.

Proof.

It is sufficient to show that the equation (u,v)? = (1,1) has four solutions
(u,v) € Zy, x Zq. This equation is equivalent to the next pair of equations:
u? mod p = 1 and v? mod ¢ = 1. Both have exactly two solutions.
Indeed, the first equation is equivalent to (v — 1)(u+ 1) mod p = 0, which
implies either p | u — 1 or p | u+ 1. In the first case u — 1 = kp, which
means u = 1, and in the second case, u + 1 = kp which means u = p — 1.
As p > 2, we never have 1 = p — 1 and hence these two solutions are
different. As both equations have two independent solutions, there are 4
combinations of the solutions everyone being a solution of (u,v)? = 1. D)
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Properties of Carmichael Numbers

Theorem

Carmichael numbers are odd.

Proof.

Let n be an even Carmichael number. As n is composite, we conclude that
n > 4. Clearly n — 1 € Z;, but

(=)= (1" <n N 1)71(—1)”‘2 +o+ <Z - D n”_l(—l)(i

=0 (mod n)

Hence, (n —1)" ! mod n = (—=1)""! mod n =n — 1 # 1, because n — 1
is odd and n — 1 > 3. A contradiction. OJ

v
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Properties of Carmichael Numbers

Theorem

Carmichael numbers are square-free (not divisible by p* for any prime p).

Proof.

Let n = p*m (where k > 2) be a Carmichael number, where p does not
dividem. If m=1,letb=p+1. If m > 3, let b € Z, be such that

= 1+p (mod p2) (1)
= 1 (mod m) (2)

In both cases p? | b— (p + 1). Thus, p does not divide b. Also,

ged(b,m) =1 (from (2)). Hence, ged(b,n) =1 and b € Z’. Note that
W l=1+p" =1+ (n—1)p (mod p?) and (n — 1)p is not divisible
by p? (as p does not divide n — 1 = p*m — 1). Thus, 5"~ mod p? # 1,
which (as k > 2) also implies 5"~ mod n = "' mod pFm # 1. O

v
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N
Correctness of the Miller-Rabin’s Test

Theorem
If n is prime, then the Miller-Rabin’s test outputs prime.

Proof.

If n —1=2F.m and m is odd, then for any a € {1,...,n — 1} either
@ a™ =1 (mod n) (and the test outputs prime), or
e a™ # 1 (mod n), which by ! =1 (mod n) (Fermat's theorem!)
implies the existence of i € {1,...,k — 1} such that a>™ mod n # 1
and a2 'm mod n = 1. Hence, a2m=_1 (mod n), because
otherwise b = a®>™ mod n would be a non-trivial v/1 modulo n,

which does not exist if n is prime. Hence, also in the second case, the
test outputs prime

O

v
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Correctness of the Miller-Rabin's Test

Theorem

If n is composite and not a Carmichael number, then the Miller-Rabin’s
test outputs composite with probability at least %

Proof.

By the properties of Fermat's test, a”~! # 1 (mod n) for at least a half of
possible values of a. For such values of a we have ™ # 1 (mod n) and

am?' # —1 (mod n) for any 0 < i < k and thereby the Miller-Rabin’s test
outputs composite. L]

V.
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N
Correctness of the Miller-Rabin’s Test

Theorem

For Carmichael numbers the Miller-Rabin’s test answers composite with
probability at least %

Proof. Let n be a Carmichael number, n — 1 = 2% . m and m be odd. Let
t=max{0<i<k|3JacZ:a*"=—1 (modn)}. Thereissuchat
because (—1)2Om =(—1)™=—1. If ¢ > t, there is no a € Z such that
a?’™ = —1 (mod n). Let

Bi={a€Z:d®" =41 (modn)} .

This set is not empty because there exists a € Z;, such that a?m=—1
(mod n). If b ¢ By then for such b, the Miller-Rabin’s test outputs
composite because none of the powers thHm, ceey b2 s = —1.
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Proof continues ...

Let p > 3 be the smallest prime such that p | n. As p? { n, we have n = pd
and ged(p,d) = 1. Let 2™ = —1 (mod n) and b € Z, be such that

b=a (mod p)
b=1 (modd) .
As both a and 1 are invertible, then so is b € Z;,. At the same time:
b2'm=qg2m=—1 (mod p)

p'm=12m =41 (modd) .

This implies that b2™ % +1 (mod n) and hence b & B;. It is easy to

verify that B; is a subgroup of Z} and hence, by the Lagrange's theorem,
|Be| 1

1Z:] = 2°

O
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