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RSA cryptosystem

In 1977, Ronald Rivest, Adi Shamir
and Leonard Adleman proposed the
following trapdoor cryptosystem:

◦ Private key: Two large random prime numbers p and q

◦ Public key: Modulus n = p · q

Let e, d ∈ Zϕ(n) such that e · d ≡ 1 (mod ϕ(n)), where
ϕ(n) = (p− 1)(q − 1) is the Euler’s function

◦ Encryption y = En,e(x) = xe mod n

◦ Decryption Dn,d(y) = yd mod n = x
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Questions

◦ Are E and D efficiently computable?

◦Why does the decryption identity Dn,d(En,e(x)) = x hold?

◦ How to find large random prime numbers?
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Efficient Exponentiation: Square and Multiply

For efficiently computing xe mod n we use the binary expansion:

e = em · 2m + em−1 · 2m−1 + . . .+ e1 · 21 + e0 · 20 ,

where em, . . . , e0 ∈ {0, 1}. We use the following computational scheme:

xem·2
m+...+e0·20 = xem·2

m · xem−1·2m−1 · . . . · xe0·20

=
(
x2

m)em · (x2m−1
)em−1

· . . . ·
(
x2

0
)e0

.

where the hyper-powers x2
0
, . . . , x2

m
are computed by using repeated

squaring

x2
k
=
(
x2

k−1
)2

Ahto Buldas, Aleksandr Lenin RSA Cryptosystem Oct 21, 2019 4 / 25



Euler’s Theorem and Decryption Identity

Theorem (Euler)

If gcd(x, n) = 1, then xϕ(n) ≡ 1 (mod n).

◦We use general group theory to prove Euler’s theorem

◦ By Euler’s theorem, if x is invertible modulo n then

(xe)d = xe·d = x1+k·ϕ(n) = x ·
(
xϕ(n)

)k
≡ x · 1k ≡ x (mod n) .

which means that the decryption identity of RSA holds for invertible x.

◦ Later, we show that decryption identity also holds for non-invertible x

Exercise: Show that finding a non-invertible x modulo n = pq is equivalent
to factoring n.
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Groups

Group consists of a set G and a binary operation · which is:

◦ Associative: a · (b · c) = (a · b) · c

◦With a unit: There is e ∈ G such that x · e = e · x = x for every x ∈ G

◦ Invertible: Every a ∈ G has an inverse a−1 ∈ G, such that a · a−1 = e

Examples:
◦ (Z,+)

◦ (Zn,+), where + denotes addition modulo n

◦ (Z∗n, ·), where Z∗n = {a ∈ Zn : gcd(a, n) = 1} and · is multiplication

modulo n
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Subgroups

A subset H ⊆ G of a group (G, ·) is a subgroup if (H, ·) is a group.

For example, the set 2Z = {. . . ,−4,−2, 0, 2, 4, . . .} of even numbers is a
subgroup of the additive group (Z,+) of integers.

Exercise: Show that for H ⊆ G being a subgroup of (G, ·) it is necessary
and sufficient that H is closed under multiplication and inverses.

Exercise: Show that for H ⊆ G being a subgroup of finite (G, ·) it is
necessary and sufficient that H is closed under multiplication.

Not true for infinite groups: Although the subset N = {0, 1, 2, . . .} of Z is
closed under addition, N is not a subgroup of (Z,+).
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Order of an Element of a Finite Group

Theorem (Order)

For any element g ∈ G of a finite group G there exists n ∈ N such that
gn = e and g, g2, g3, . . . , gn are all different. Such n is called the order of
g in G and is denoted by ord(g).

Proof.

As G is finite there is n ∈ N such that gn+1 ∈ {g, g2, g3, . . . , gn}. Let n
be the smallest such number, which also means that g, g2, g3, . . . , gn are
all different. Hence, gn+1 = g (and gn = e), because if gn+1 = g1+k for
0 < k < n, then gn = gk ∈ {g, g2, g3, . . . , gn−1}, contradicting the
minimality of n.

The set {g, g2, g3, . . . , gn} is a subgroup denoted by 〈g〉 and called the
subgroup generated by g. Note that |〈g〉|= ord(g) and gord(g) = e.
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Lagrange’s Theorem

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |G||H| is an
integer.

Proof.

Let H = {h1, . . . , hm}. For any g ∈ G, let gH = {gh1, . . . , ghm}, which
is called the co-set of g. As H has the unit, g ∈ gH and hence every
g ∈ G is in a co-set. Note that eH = H and hence H is itself a co-set.

If ghi = ghj , then hi = hj and hence all cosets are of equal size |gH|=|H|.

If gH ∩ g′H 6= ∅, then we have gH = g′H. Indeed, if ghi = a = g′hj ,
then for every k, we have ghk = ghih

−1
i hk = ah−1i hk = g′hjh

−1
i hk ∈ g′H

and hence gH ⊆ g′H, which due to |gH|=|g′H| implies gH = g′H.
Therefore, co-sets split G into a finite number of pieces of size |H|.
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Exponentiation Theorem and Proof of Euler’s Theorem

Theorem (Exponentiation)

If G is a finite group and g ∈ G, then g|G| = e.

Proof.

From Lagrange’s theorem, it follows that |G||〈g〉| = k ∈ N and hence

g|G| = g|〈g〉|·k =
(
g|〈g〉|

)k
= 1k = e .

Corollary (Euler’s Theorem)

If gcd(x, n) = 1, then xϕ(n) mod n = 1

Proof.

The set Z∗n = {x ∈ Zn : gcd(x, n) = 1} is a group with size ϕ(n).
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Fermat’s Theorem and Primality Test

Corollary (Fermat’s Theorem)

If p is prime and 0 < x < p, then xp−1 ≡ 1 (mod p).

Fermat’s primality test (Is n prime?): Pick random x← {1, . . . , n− 1}
and compute c = xn−1 mod n.
◦ If c 6= 1, then by Fermat’s theorem, n is not prime

◦ If c = 1, then repeat the test

◦ If test is repeated k times, we stop and claim that n is prime

Question: How reliable is Fermat’s test?
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Pseudo-Primes to Base b

If n is composite and bn−1 ≡ 1 (mod n), then n is said to be
pseudo-prime to base b.

Let Hn = {b : b ∈ Z∗n, bn−1 ≡ 1 (mod n)}, i.e. Hn is the set of all
invertible bases in Zn-s, to which n is pseudo-prime.

Theorem

Hn is a subgroup of the multiplicative group Z∗n.

Proof.

◦ If a, b ∈ Hn, then (ab)n−1 ≡ an−1 · bn−1 ≡ 1 (mod n). Hence, ab ∈ Hn.

◦ 1 ∈ Hn, because 1n−1 = 1.

◦ If a ∈ Hn and ab ≡ 1 (mod n), then

bn−1 ≡ an−1 · bn−1 ≡ (ab)n−1 ≡ 1n−1 ≡ 1 (mod n).
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Carmichael Numbers and the Reliability of Fermat’ Test

Definition (Carmichael number)

any composite n with Hn = Z∗n. The smallest Carmichael
number is 561.

Theorem

If n is composite but not a Carmichael number, then |Hn|≤ |Z
∗
n|
2 = ϕ(n)

2 .

Proof.

From Hn 6= Z∗n and Lagrange’s thm.: 1 < |Z∗n|
|Hn| ∈ N. Thus, |Z

∗
n|
|Hn| ≥ 2 .

Corollary: For composite but not Carmichael numbers the Fermat’s test
fails with probability ≤ 1

2 and the k-time test with probability ≤ 1
2k

.
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How many Carmichael numbers are there?

Theorem (Alford, Granville, Pomerance; 1994)

Let C(n) be the number of Carmichael numbers in the range [0...n]. Then
C(n) > n2/7. Hence, there are infinitely many Carmichael numbers.

Corollary: Fermat’s test is not completely trustworthy even for big
numbers.
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Miller-Rabin’s test

◦ Choose a random a← {1, . . . , n− 1}.

◦ If gcd(a, n) 6= 1, then output composite.

◦ Let n− 1 = 2k ·m, where m is odd.

◦ If am mod n = 1 then output prime.

◦ If am·2
i ≡ −1 (mod n) for an i = 0 . . . k − 1, then output prime.

◦ Otherwise, output composite.

Theorem

If n is prime, then Miller-Rabin’s test outputs prime.
If n is composite, then the test outputs composite with probability ≥ 1

2 .
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

If gcd(p, q) = 1 then the rings Zpq and Zp × Zq are isomorphic.

Proof.

Define f : Zpq → Zp × Zq so that f(x) = (x mod p, x mod q). Obviously,
f preserves the ring operations. As |Zpq|=|Zp × Zq|, it remains to show
that f is injective. For that, we define a mapping g : Zp × Zq → Zpq so
that g(u, v) = (αpv + βqu) mod pq, where α, β ∈ Z and αp+ βq = 1.
Therefore, if x ∈ Zpq, x mod p = x− kp, and x mod q = x− `q, then

g(f(x)) = g(x− kp, x− `q) = (αp(x− `q) + βq(x− kp)) mod pq

= (αpx+ βqx− pq(α`+ βk)) mod pq

= (αpx+ βqx) mod pq = x(αp+ βq) mod pq = x .
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Corollary 1: RSA Decryption Identity

Theorem (RSA decryption identity)

If e · d ≡ 1 (mod ϕ(pq)), where p 6= q are primes, then for every x ∈ Zpq:

xed ≡ x (mod pq) .

Proof.

As : Zpq
∼= Zp × Zq, it suffices to prove (u, v)ed = (u, v) in Zp × Zq. As

(0, 0)ed = (0, 0), we may assume u, v > 0. Hence, by Fermat’s theorem:

(u, v)ed = (uedmod p, vedmod q) = (u1+kϕ(pq)mod p, v1+kϕ(pq)mod q)

= (u · [uk(q−1)]p−1 mod p︸ ︷︷ ︸
=1

, v · [vk(p−1)]q−1 mod q︸ ︷︷ ︸
=1

)

= (u, v)
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Corollary 2: Solving Equations

If gcd(p, q) = 1, then for every u ∈ Zp and v ∈ Zq the system{
x mod p = u
x mod q = v

has one and only one solution in the interval [0, 1, 2, ..., pq − 2, pq − 1].

Example. Find all solutions x in the interval [0...20]:{
x ≡ 2 (mod 3)
x ≡ 6 (mod 7).

Solution. As (−2) · 3 + 1 · 7 = 1, from the proof of Chinese Remainder
theorem, it follows that x ≡ 7 · 2 + (−2) · 3 · 6 ≡ 20 (mod 21), which
implies that x = 20 is the only solution in [0...20].
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Corollary 3: Square Roots of 1

Theorem

If p, q are primes such that 3 ≤ p < q, then the unit 1 ∈ Zpq has exactly 4
different square roots.

Proof.

It is sufficient to show that the equation (u, v)2 = (1, 1) has four solutions
(u, v) ∈ Zp×Zq. This equation is equivalent to the next pair of equations:
u2 mod p = 1 and v2 mod q = 1. Both have exactly two solutions.
Indeed, the first equation is equivalent to (u− 1)(u+1) mod p = 0, which
implies either p | u− 1 or p | u+ 1. In the first case u− 1 = kp, which
means u = 1, and in the second case, u+ 1 = kp which means u = p− 1.
As p > 2, we never have 1 = p− 1 and hence these two solutions are
different. As both equations have two independent solutions, there are 4
combinations of the solutions everyone being a solution of (u, v)2 = 1.
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Properties of Carmichael Numbers

Theorem

Carmichael numbers are odd.

Proof.

Let n be an even Carmichael number. As n is composite, we conclude that
n ≥ 4. Clearly n− 1 ∈ Z∗n but

(n− 1)n−1 = (−1)n−1︸ ︷︷ ︸
=−1

+

(
n− 1

1

)
n(−1)n−2 + . . .+

(
n− 1

n− 1

)
nn−1(−1)0︸ ︷︷ ︸

≡0 (mod n)

Hence, (n− 1)n−1 mod n = (−1)n−1 mod n = n− 1 6= 1, because n− 1
is odd and n− 1 ≥ 3. A contradiction.
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Properties of Carmichael Numbers

Theorem

Carmichael numbers are square-free (not divisible by p2 for any prime p).

Proof.

Let n = pkm (where k ≥ 2) be a Carmichael number, where p does not
divide m. If m = 1, let b = p+ 1. If m ≥ 3, let b ∈ Zn be such that

b ≡ 1 + p (mod p2) (1)

b ≡ 1 (mod m) (2)

In both cases p2 | b− (p+ 1). Thus, p does not divide b. Also,
gcd(b,m) = 1 (from (2)). Hence, gcd(b, n) = 1 and b ∈ Z∗n. Note that
bn−1 ≡ (1 + p)n−1 ≡ 1 + (n− 1)p (mod p2) and (n− 1)p is not divisible
by p2 (as p does not divide n− 1 = pkm− 1). Thus, bn−1 mod p2 6= 1,
which (as k ≥ 2) also implies bn−1 mod n = bn−1 mod pkm 6= 1.
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Correctness of the Miller-Rabin’s Test

Theorem

If n is prime, then the Miller-Rabin’s test outputs prime.

Proof.

If n− 1 = 2k ·m and m is odd, then for any a ∈ {1, . . . , n− 1} either

am ≡ 1 (mod n) (and the test outputs prime), or

am 6≡ 1 (mod n), which by an−1 ≡ 1 (mod n) (Fermat’s theorem!)
implies the existence of i ∈ {1, . . . , k − 1} such that a2

im mod n 6= 1
and a2

i+1m mod n = 1. Hence, a2
im ≡ −1 (mod n), because

otherwise b = a2
im mod n would be a non-trivial

√
1 modulo n,

which does not exist if n is prime. Hence, also in the second case, the
test outputs prime
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Correctness of the Miller-Rabin’s Test

Theorem

If n is composite and not a Carmichael number, then the Miller-Rabin’s
test outputs composite with probability at least 1

2 .

Proof.

By the properties of Fermat’s test, an−1 6≡ 1 (mod n) for at least a half of
possible values of a. For such values of a we have am 6≡ 1 (mod n) and
am2i 6≡ −1 (mod n) for any 0 ≤ i < k and thereby the Miller-Rabin’s test
outputs composite.
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Correctness of the Miller-Rabin’s Test

Theorem

For Carmichael numbers the Miller-Rabin’s test answers composite with
probability at least 1

2 .

Proof. Let n be a Carmichael number, n− 1 = 2k ·m and m be odd. Let
t = max{0 ≤ i < k | ∃a ∈ Z∗n : a2

im ≡ −1 (mod n)}. There is such a t
because (−1)20m = (−1)m ≡ −1. If t′ > t, there is no a ∈ Z∗n such that

a2
t′m ≡ −1 (mod n). Let

Bt = {a ∈ Z∗n : a2
tm ≡ ±1 (mod n)} .

This set is not empty because there exists a ∈ Z∗n such that a2
tm ≡ −1

(mod n). If b 6∈ Bt then for such b, the Miller-Rabin’s test outputs

composite because none of the powers b2
t+1m, . . . , b2

km is ≡ −1.
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Proof continues ...
Let p ≥ 3 be the smallest prime such that p | n. As p2 - n, we have n = pd
and gcd(p, d) = 1. Let a2

tm ≡ −1 (mod n) and b ∈ Zn be such that

b ≡ a (mod p)
b ≡ 1 (mod d) .

As both a and 1 are invertible, then so is b ∈ Z∗n. At the same time:

b2
tm ≡ a2tm ≡ −1 (mod p)

b2
tm ≡ 12

tm ≡ +1 (mod d) .

This implies that b2
tm 6≡ ±1 (mod n) and hence b 6∈ Bt. It is easy to

verify that Bt is a subgroup of Z∗n and hence, by the Lagrange’s theorem,
|Bt|
|Z∗n|
≤ 1

2 .
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