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Finding the Period of a Function

Peter Shor showed in 1994 that by using
a quantum computer, it is possible to ef-
ficiently (in time O(m2)) find the period of
a wide class of functions f : Z→ Z2m .

The period of f is the least positive inte-
ger λ such that f(x + λ) = f(x) for every
argument x.

Shor’s algorithm was one of the first quantum algoriths with serious
practical consequences:

Efficient breakage of RSA and Elliptic curve cryptosystems with quantum
computers
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Searching from Unsorted Databases

Lov Grover showed in 1996 that quantum
computers are able to:

Search data from N -element unsorted
databases in time O(

√
N).

Find collisions for N -output hash
functions in time O( 3

√
N)

In classical computational model:

Searching from N -element unsorted database takes O(N) time
(O(logN) for sorted data).

Finding collisions for N -output hash functions takes O(
√
N) time.
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Factoring of n = pq via Quantum Period Finding

The order ordn(a) of a ∈ Z∗n is the period of f(x) = ax mod n.

Repeat the next cycle until success:

1 Random element a← Z∗n is picked.

2 The period r of f(x) = ax mod n is found with success probability
1

lnn using quantum computer.

3 Using a and r, a non-trivial
√

1 is found with probability 1
2 .

4 The modulus n is factored via
√

1.
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Finding Non-Trivial
√
1 via ordn(·)

Lemma 1: If p > 2 is prime, p− 1 = 2d · p′, where p′ is odd, the 2d

divides the order of exactly half of the elements of Z∗p.

Proof: Let g be a generator of Z∗p, a = gk ∈ Z∗p, and r = ordp(a).

If k is odd, then gkr = 1 and ordp(g) = p− 1 = |Z∗p| imply p− 1 | kr and

hence 2d | r.

If k is even, then (gk)
p−1
2 = (gp−1)k/2 = 1k/2 = 1 implies r | p−12 and

hence 2d - r.

Ahto Buldas, Aleksandr Lenin Quantum Computation Dec 2, 2019 5 / 47



Lemma 2: If n = pq, where p > q > 2 are prime, then r = ordn(a) are
even and a

r
2 6≡ −1 (mod n) for at least half of the elements a ∈ Z∗n.

Proof: It follows from CRT that Z∗n ∼= Z∗p × Z∗q and picking a← Z∗n is
equivalent to picking a random vector (ap, aq) ∈ Z∗p × Z∗q , where ap ← Z∗p
and aq ← Z∗q are independent random variables.

If a ∼ (ap, aq), then by ordn(a) = lcm(ordp(ap), ordq(aq)) we have that
ordn(a) can be odd only if ordp(ap) and ordq(aq) are both odd, the
probability of which does not exceed 1

4 .

If ordn(a) is even and a
r
2 ≡ −1 (mod n), then (ap)

r
2 ≡ −1 (mod p) and

(aq)
r
2 ≡ −1 (mod q). Hence, ordp(ap) - r2 , and as ordp(ap) | r, we have

2d | ordp(ap) and, analogously, 2d | ordq(aq), that by Lemma 1, happens
with probability 1

4 .

⇒ P[a← Z∗n : ordn(a) is even and a
ordn(a)

2 is non-trivial
√

1] ≥ 1
2
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Quantum Mechanics and Quantum Computers

1900: Planck claimed that electromagnetic energy is
always a multiple of an elementary unit: E = hν

∼1920: Schrödinger, Bohr, Heisenberg, et al. devel-
oped the foundations of quantum mechanics

∼1930: Dirac, von Neumann and Hilbert created
modern quantum mechanics

1980-1985: Manin, Benioff, Feynman, and Deutsch
created the foundations of quantum computation
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State Space

The state space of a closed physical system (electron, whole universe, etc.)
is a complex vector space V with inner product 〈·, ·〉, so called Hilbert
space.

State of a physical system is represented by a unit vector Ψ ∈ V , i.e.
||Ψ|| =

√
〈Ψ,Ψ〉 = 1.

All information about the system is in Ψ.
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Dynamics

If Ψ(t) is the state at t and Ψ(t′) is the state at later time t′, then

Ψ(t′) = Ut,t′Ψ(t) ,

where U is a unitary linear operator, i.e. UU † = 1, where U † is the
Hermitian conjugate: a unique operator U , so that for every Ψ,Ψ′ ∈ V :

〈UΨ,Ψ′〉 = 〈Ψ, U †Ψ′〉

Operator U depends on the described system.

Ut,t′ is the solution of a differential equation i~ ∂
∂tΨ = HΨ, the

Schrödinger’s equation, integral from t to t′.

H is the Hamiltoinian operator that describes the energy of the system,
~ = h

2π is the reduced Planck konstant and i is the imaginary unit.
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Measurement

Measurement of a physical quantity is descibed by a mutually ortogonal
set {Vi} of subspaces that generate the whole space V .

Vi are Vj orthogonal: 〈Ψi,Ψj〉 = 0 for every Ψi ∈ Vi ja Ψj ∈ Vj
Every subspace Vi is associated with possible measurement result ri

If Pi : V → Vi is the projection operator of the corresponding result, then
after measurement, with probability pi = ||PiΨ||2 the result is ri and the
state Ψ changes to

Ψ′ =
1

||PiΨ||
PiΨ .
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Quantum Bit (qubit)

Two-dimensional complex vector space V with basis vectors |0〉 ja |1〉

A qubit can be in a state:

Ψ = α|0〉+ β|1〉 ,

where α, β ∈ C ja |α|2 + |β|2 = 1.

|0〉 and |1〉 are orthogonal.

The corresponding measurement results are 0 and 1.

Measurement of Ψ gives:

|0〉 with probability |α|2

|1〉 with probability |β|2.

For example, measuring Ψ = 1√
2
(|0〉+ |1〉) gives 0 with probability 1

2
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Composition of Systems

Two classical systems with state sets S1 and S2 compose to a system with
state set S1 × S2 – direct product, the set of all ordered pairs (s1, s2) of
states s1 ∈ S1 and s2 ∈ S2.

Two quantum systems with state spaces V1 and V2 compose to a system
with state space V1 ⊗ V2 (tensor product).

Let L(S) denote the complex vector space with basis S.

If V1 = L(S1) and V2 = L(S2), then

V1 ⊗ V2 = L(S1 × S2) ,

i.e. tensor product is the complex vector spate whose basis vectors are all
possible ordered pairs (s1, s2) of basis vectors s1 ∈ S1 and s2 ∈ S2.
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Two-Bit Quantum Register

The state space is the four-dimensional space V ⊗ V , where V is the state
space of a qubit with basis vectors |0〉 and |1〉.

The basis vectors are |00〉, |01〉, |10〉, and |11〉.

Two-bit quantum register can be in the state:

Ψ = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 ,

where α, β, γ, δ ∈ C and |α|2 + |β|2 + |γ|2 + |δ|2 = 1.
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n-Bit Quantum Register

The state space is 2n-dimensional space V ⊗ V ⊗ . . .⊗ V︸ ︷︷ ︸
n

The basis vectors are |0..00〉, |0..01〉 . . . |1..11〉.

Exponential growth of the dimension is the main reason why the behavior
of quantum mechanical systems is hard to model with classical computers.
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Entanglement

Vectors of V ⊗ V that are not representable in the form

Ψ = (a|0〉+ b|1〉)⊗ (c|0〉+ d|1〉)
= ac|00〉+ ad|01〉+ bc|10〉+ bd|11〉

where |a|2 + |b|2 = |c|2 + |d|2 = 1 are called entangled states.

Homework exercise: Show that the following state is entangled:

Ψ =
1√
2

(|00〉+ |11〉)
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Einstein Podolsky Rosen (EPR) Paradox

Let XY be a two-bit quantum register that is in the state 1√
2
(|00〉+ |11〉)

Alice takes the bit Y to Andromeda galaxy, X stays in Earth with Bob.

X ←− . . .←− XY −→ . . . −→ Y

If Alice measures Y , then with probability 1
2 she has 0 or 1.

With probability 1
2 the state of the register immediately changes to |00〉 or

to |11〉 and hence, also X is now fixed.

EPR paradox: How can X know immediately (faster than light) that Y
has been measured?
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Partial Measurement of a Quantum Register

If a part (e.g. Y ) of a quantum register is measured, this cannot have any
influence on the probability distributions of other parts (e.g. X).

Though Alice knows, what Bob gets when he measures X, but Bob does
not know and for him, X is still random.

We say that X is in mixed state, that is a probabilistic combination of
state vectors (pure states).

Principle of deferred measurement: all measurements during quantum
computations can be postponed to the end of computations.

Principle of indirect measurement: if a qubit is not measured till the end
of computation, then we can measure it right after creation.
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Quantum Logic Gates

Quantum computations can be represented as a sequence of quantum
logic gates.

m-bit quantum gate is a device that transforms input qubits x0, . . . , xm−1
to output qubits y0, . . . , ym−1.

The action of quantum gates is unitary and can be represented by unitary
matrices.

A single-bit quantum gate is a represented by a unitary transform U with

matrix

[
u00 u01
u10 u11

]
) that converts the input qubit α|0〉+ β|1〉 to output

qubit α′|0〉+ β′|1〉 so that:[
α′

β′

]
=

[
u00 u01
u10 u11

]
·
[
α
β

]
=

[
u00α+ u01β
u10α+ u11β

]
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Quantum NOT-gate

NOT-gate is defined by the operations on base vectors as follows:

NOT(|0〉) = |1〉
NOT(|1〉) = |0〉

NOT-gate mixes the coefficients α and β of α|0〉+ β|1〉:

NOT(α|0〉+ β|1〉) = β|0〉+ α|1〉 ,

NOT-gate is represented by the matrix

[
0 1
1 0

]
.

NOT(NOT(Ψ)) = Ψ for every state vector Ψ, because[
0 1
1 0

]
·
[

0 1
1 0

]
=

[
1 0
0 1

]
= I .
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Hadamard Gate

Hadamard gate is defined by the operations on base vectors as follows:

H(|0〉) =
|0〉+ |1〉√

2

H(|1〉) =
|0〉 − |1〉√

2

Hadamard gate is represented by the matrix H = 1√
2

[
1 1
1 −1

]
.

Homework exercise: Show that HH = I.
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Phase Shift Gate

Phase shift gate is defined by the operations on base vectors as follows:

Rφ(|0〉) = |0〉
Rφ(|1〉) = eiφβ|1〉

Phase shift gate is represented by the matrix Rφ =

[
1 0
0 eiφ

]
.

Homework exercise: Show that RφR−φ = I.

Ahto Buldas, Aleksandr Lenin Quantum Computation Dec 2, 2019 21 / 47



Controlled Inversion or Quantum XOR-Gate

Defined by the operations on base vectors as follows:

|00〉 7→ |00〉 |10〉 7→ |11〉
|01〉 7→ |01〉 |11〉 7→ |10〉

i.e., second bit is inverted if the first bit is set. Denoted by:

|x1〉 |y1〉
|x0〉 • |y0〉

Controlled inversion gate is represented by the matrix:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Swap Gate

Defined by the operations on base vectors as follows:

|00〉 7→ |00〉 |10〉 7→ |01〉
|01〉 7→ |10〉 |11〉 7→ |11〉

i.e., the order of the bits is inversed.

Represented by the matrix: 
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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Controlled Phase Shift

Defined by the operations on base vectors as follows:

|00〉 7→ |00〉 |10〉 7→ |10〉
|01〉 7→ |01〉 |11〉 7→ eiφ|11〉

i.e., if the first bit is set, the phase of second qubit is shifted. Denoted by:

|x1〉 Rπ |y1〉
|x0〉 • |y0〉

Represented by the matrix: 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ


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Example 1

Quantum circuit

|x1〉 |y1〉
|x0〉 H |y0〉

is represented by the matrix:

H ⊗ I =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


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Example 2

Quantum circuit

|x1〉 H |y1〉
|x0〉 |y0〉

is represented by the matrix:

I ⊗H =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


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Example 3

Quantum circuit

|x1〉 H |y1〉

|x0〉 H |y0〉
is represented by the matrix:

H ⊗H =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


For example:

(H ⊗H)|00〉 = H|0〉 ⊗H|0〉 =
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)

=
1

2
(|00〉+ |01〉+ |10〉+ |11〉)
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Example 4

Quantum circuit

|x1〉 Rπ
2

|y1〉

|x0〉 H • |y0〉

is represented by the matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 ·


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 i 0 −i


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Non-Cloning Theorem

Cloner is a unitary linear operator with a state Φ, such that for every state
Ψ we have U : |Ψ〉|Φ〉 7→ |Ψ〉|Ψ〉.

Define |0〉 := |Φ〉. In this case, U : |0〉|0〉 7→ |0〉|0〉 and U : |1〉|0〉 7→ |1〉|1〉.
By the linearity of U :

U :

(
1√
2
|0〉+

1√
2
|1〉
)
|0〉 7→ 1√

2
|0〉|0〉+

1√
2
|1〉|1〉

On the other hand,(
1√
2
|0〉+

1√
2
|1〉
)(

1√
2
|0〉+

1√
2
|1〉
)
6= 1√

2
|0〉|0〉+

1√
2
|1〉|1〉
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Simulating Classical Circuits

For every classical logic circuit (say, with AND- and NOT gates) that
computes a function f : {0, 1}n → {0, 1}m, there is a quantum circuit U
that transforms a (n+m)-qubit quantum register in the following way:

U : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉 ,

which means that |x〉|0m〉 7→ |x〉|f(x)〉.
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Quantum Parrallelism

Hadamard gate H⊗n converts |0n〉|0m〉 to the superposition

1√
N

N−1∑
x=0

|x〉|0m〉 ,

where N = 2n. By applying U , we get a superposition

1√
N

N−1∑
x=0

|x〉|f(x)〉

Analogous to classical parallel computation with 2n threads, but threads
are not separately accessible (no measurement!)

By measuring the output, one single value y = f(x) is obtained. This is
the same as classical computation where x← {0, 1}n and y ← f(x).
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Exchanging Information Between Threads

In classical computation, threads can exchange information in arbitrary
way.

In quantum computation, such information exchange is limited.

For example, if all threads compute a one-bit output, there are no known
ways how compute the product of those bits.

If this is possible, one can solve the so-called NP-complete combinatorial
problems efficiently with quantum computer.

This is widely belived (among complexity theoreticians) to be impossible.
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Quantum Fourier Transform (QFT)

Classical Fourier Transform (FT) converts a vector (x0, . . . , xN−1) ∈ CN
to vector (y0, . . . , yN−1) ∈ CN so that:

yk =
1√
N

N−1∑
j=0

xje
2πi j k

N . (1)

QFT converts
∑N−1

i=0 xi|i〉 to state
∑N−1

i=0 yi|i〉 using (1).

If N = 2, then x0|0〉+ x1|1〉 maps to x0+x1√
2
|0〉+ x0−x1√

2
|1〉. In matrix form:[

y0
y1

]
=

1√
2

[
1 1
1 −1

]
·
[
x0
x1

]
= H ·

[
x0
x1

]
.
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Using the notation ω = e
2πi
N , for N = 4 the QFT is represented by:

1

2


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


QFT2 as a quantum circuit:

|x1〉 • H × |y1〉

|x0〉 H Rπ
2

× |y0〉

This corresponds to the next product of matrices:
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


︸ ︷︷ ︸

swap

·


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


︸ ︷︷ ︸

second H

·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i


︸ ︷︷ ︸

phase shift

·


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


︸ ︷︷ ︸

first H
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The next figure depicts a general recursive construction of QFTn (if
N = 2n) using QFTn−1. Schemes are presented without the last swap.

|xn−1〉 • • · · · • · · · • H |y0〉

|xn−2〉

QFTn−1

· · · · · · Rπ
2

|y1〉
...

...

|xi〉 · · · R π

2n−i−1 · · · |yn−i−1〉
...

...

|x1〉 R π

2n−2 · · · · · · |yn−2〉

|x0〉 R π

2n−1 · · · · · · |yn−1〉
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Period Finding with Shor’s Algorithm

Let F : |x, y〉 7→ |x, y ⊕ f(x)〉 be a quantom circuit that computes an
r-periodic function f : Z→ Z2m . Let r < 2n−1 and N = 22n.

We use two quantum registers: 2n-qubit X and m-qubit Y .

Shor’s algorithm (initially, XY is in the state
∣∣02n, 0m〉)

S1 Using H⊕2n create the superposition Ψ = 1√
N

∑N−1
i=0 |i, 0〉

S2 Using F compute the superposition Φ = 1√
N

∑N−1
i=0 |i, f(i)〉

S3 Measure the register Y (actually unnecessary!)

S4 Apply QFT2n to X

S5 Measure X to obtain |i0〉, where i0 ≈ λNr ja λ ∈ Zr∣∣02n, 0m〉 H⊕2n

−→ Ψ
F−→ Φ

QFT2n−→ Φ0
M−→ |i0, ∗〉 kus i0 ≈ λNr
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Step S3: After Measuring Y

The result is |∗, k〉, where k = f(s) and s is chosen so that s < r.

A f is r-periodic, we obtain a superpositsiooni Φ′ of |xj , k〉, where
xj = s+ jr. There are p = dN/re of such states. Hence:

Φ′ =
1
√
p

p−1∑
j=0

|s+ jr, k〉 .

Actually, S3 unnecessary because of the deferred measurement principle.

Register Y can be transported to Andromeda galaxy and measuring Y
cannot have any influence over later measurements of X.

X ←− . . .←− XY −→ . . . −→ Y
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What happens if we measure X now?

The result is |s+ jr, k〉.

If f is one to one in Zr, then s is uniformly distributed.

Also j is uniformly distributed on Zp.

Hence, if N
r ∈ Z, then s+ jr is uniformly distributed on ZN and does not

contain any information about r.

If we repeat the experiment from S1, we get |s′ + j′r, k′〉, where s′ and j′

are independent of s and j, and hence, s′ + j′r is independent of s+ jr.

Therefore, repeating gives us nothing!
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Step S4: QFT

“Filters out” the random shift s.

After applying QFT2n we get:

Φ0 = QFT2nΦ′ =
1√
pN

N−1∑
i=0

p−1∑
j=0

e2πi
i(s+jr)
N

 |i, k〉
=

1√
pN

N−1∑
i=0

e2πi
is
N

p−1∑
j=0

e2πi
ijr
N

 |i, k〉
|e2πi

is
N | = 1 and

|
∑p−1

j=0 e
2πi ijr

N | ≈
{
p if ir

N ∈ Z, i.e. if i is a multiple of N
r

0 if ir
N 6∈ Z
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Explanation:

lim
p→∞

1

p

p−1∑
j=0

e2πiαj =

{
1 if α ∈ Z
0 if α 6∈ Z .

The graph of g(α) = 1
p

∑p−1
j=0 e

2πiαj if p = 100.
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Step S5: Measuring X

We obtain i ≈ λNr where λ ∈ Zr, i.e.
 i
N −

λ
r

 < 2−2n.

If r, r′ < 2n−1 ja λ
r 6=

λ′

r′ then λr′ 6= λ′r and thusλr − λ′

r′

 =
|λr′ − λ′r|

rr′
≥ 1

rr′
≥ 4 · 2−2n

Hence, a rational approximation a
b of i

N = i · 2−2n with restriction
b < 2n−1 is uniquely defined.

The best rational approximation a
b with b < M can be found in time

O(logM) by using continued fractions. If M = 2n, then in time O(n).

If gcd(λ, r) = 1 then b = r. It is sufficient that λ is a prime.

This happens with probability about 1
ln r = 1

O(n) and hence O(n) trials are
sufficient to find r.
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Continued Fractions

Denote

[a0; a1; . . . ; an] = a0 +
1

a1 + 1
...+ 1

an

= [a0; a1; . . . ; an − 1; 1]

Every rational number x ≥ 1 can be represented with continued fractions.
For example:

31

13
= 2 +

5

13
= 2 +

1
13
5

= 2 +
1

2 + 3
5

= 2 +
1

2 + 1
5
3

= 2 +
1

2 + 1
1+ 2

3

= 2 +
1

2 + 1
1+ 1

3
2

= 2 +
1

2 + 1
1+ 1

1+1
2

= [2; 2; 1; 1; 2]

= 2 +
1

2 + 1
1+ 1

1+ 1

1+1
1

= [2; 2; 1; 1; 1; 1]
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Theorem: [a0; a1; . . . ; an] = pn
qn

, where p0 = a0, q0 = 1, p1 = 1 + a0a1,
q1 = a1,

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

Proof: Induction on n:

Basis: [a0] = a0 = a0
1 = p0

q0
and [a0; a1] = a0 + 1

a1
= 1+a0a1

a1
= p1

q1
.

Step: if the claim is true for n− 1 then:

[a0; . . . ; an] = [a0; a1; . . . ; an−1 +
1

an
] =

p̃n−1
q̃n−1

=
(an−1 + 1

an
)pn−2 + pn−3

(an−1 + 1
an

)qn−2 + qn−3
=
pn−1 + pn−2/an
qn−1 + qn−2/an

=
pn
qn

because p̃n−2 = pn−2, q̃n−2 = qn−2, p̃n−3 = pn−3, q̃n−3 = qn−3.
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Corollary: pn ≥ pn−1 ≥ . . . ≥ p1 ≥ p0 ja qn ≥ qn−1 ≥ . . . ≥ q1 ≥ q0.

Lemma: qnpn−1 − pnqn−1 = (−1)n for every n > 0.

Proof: Induction on n:

Basis: r1 = q1p0 − p1q0 = a0a1 − (1 + a0a1) · 1 = −1 = (−1)1.

Step: If rn−1 = qn−1pn−2 − pn−1qn−2 = (−1)n−1 then:

rn = qnpn−1 − pnqn−1
= (anqn−1 + qn−2)pn−1 − (anpn−1 + pn−2)qn−1

= −(qn−1pn−2 − pn−1qn−2) = −rn−1 = −(−1)n−1 = (−1)n
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Theorem: Let x ∈ Q ja p
q = [a0; a1; . . . ; an] ∈ Q (i.e. p

q = pn
qn

) such that∣∣∣∣pq − x
∣∣∣∣ ≤ 1

2q2
. (2)

Then there exist an+1, . . . , aN , so that x = [a0; a1; . . . ; an; an+1; . . . ; aN ],
i.e. the continued fraction of p

q is the continued fraction of x.

Proof: Define δ so that x = pn
qn

+ δ
2q2n

. Then by (2) we have |δ| < 1. Let

λ = 2 · qnpn−1 − pnqn−1
δ

− qn−1
qn

.

then ...
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...

[a0; . . . ; an;λ] =
λpn + pn−1
λqn + qn−1

=
2pn

qnpn−1−pnqn−1

δ − qn−1 pnqn + pn−1

2qn · qnpn−1−pnqn−1

δ

=
pn
qn

+
δ

2q2n
= x

We choose n to be even and get λ = 2
δ −

qn−1

qn
> 2− 1 = 1 Hence, there

are an+1, . . . , aN such that λ = [an+1; . . . ; aN ] and

x = [a0; . . . ; an;λ] = [a0; . . . ; an; an+1; . . . ; aN ]
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