
IDK1531 Advanced C++ Course
Inheritance

Dynamic binding

Aleksandr Lenin

April 23rd, 2019

Inheritance, Dynamic Binding

The key ideas of object-oriented programming are:
1. data abstraction – classes separate interface from

implementation.
2. incapsulation – objects are self-contained

self-sufficient entities that have states.
3. inheritance – model relationships among similar

types.
4. dynamic binding – use objects ignoring the details of

how they differ.

Inheritance, Dynamic Binding

Inheritance:
• Classes related by inheritance form a hierarchy
• There is a base class at the root of the hierarchy
• Other classes inherit from the base class, directly or

indirectly
• Inheriting classes are known as derived classes
• Base class defines members that are common to the

types in the hierarchy
• Derived class defines members that are specific to the

derived class itself
• Base class distinguishes between:

• Type-dependent functions – derived classes define by
themselves (defined as virtual functions)

• Type-independent functions – derived classes inherit
without change

Inheritance, Dynamic Binding

Inheritance, Dynamic Binding

A derived class must specify the class(es) from which it
intends to inherit in a class derivation list – a colon (:)
followed by a comma-separated list of base classes, each of
which may have an optional access specifier
class Base {

virtual void doSomething();
};

class Deriv : public Base {
void doSomething() override;

};

: public Base means that we can use objects of type
Deriv as if they were Base objects

Inheritance, Dynamic Binding

• The derived class may provide an implementation of
the virtual functions it intends to re-define

• The derived class may include the virtual keyword on
these functions, but is not required to do so

• In order to explicitly state that it intends to override a
virtual function that it inherits, the override keyword
is added to the function declaration after its parameter
list

• Single inheritance – classes inherit directly from only
one base class

• Multiple inheritance – classes inherit from multiple
base classes

Inheritance, Dynamic Binding

Let us start with a trivial example:

Inheritance, Dynamic Binding

class Shape {
public:

Shape() = default;
Shape(string color)

: _color(color) {}
virtual ~Shape() = default;
virtual string getTypeInfo(){

return string("Some shape"); }
string getColor() { return _color; }

protected:
string _color;

};

Classes used as the root of an inheritance hierarchy almost
always define a virtual destructor.

Inheritance, Dynamic Binding

class Shape2D : public Shape {
public:

Shape2D(string c) : Shape(c) {}
string getTypeInfo() override {

return string("2D Shape");
}

protected:
Vector2D origin;

};

Inheritance, Dynamic Binding

Access modes:
• public – accessible to derived classes, from outside of

the class, to friends of the class
• private – inaccessible to derived classes nor from

outside of the class (accessible only within the class
itself)

• protected – accessible to derived classes and friends
of the class, inaccessible from outside of the class. A
derived class member of a friend may access the
protected members of the base class only via the
derived object – there is no direct access to the
protected members of the base class (consider the
example on the next slide)

Inheritance, Dynamic Binding

class Base {
protected:

int prot;
};
class Derived : public Base {

friend void foo(Base&);
friend void foo(Derived&);

};
foo(Derived& d) { d.prot = 0; } // ok
foo(Base& b) { b.prot = 0; } // error

Inheritance, Dynamic Binding

Public inheritance class Deriv : public Base:
• public → public
• protected → protected
• Additionally, we can bind an object of a publicly

derived type to a pointer of a reference to the base type
Private inheritance class Deriv : private Base:

• public → private
• protected → private

Protected inheritance class Deriv : protected Base:
• public → protected
• protected → protected

Inheritance, Dynamic Binding

Consider the following class definition
class A {
public:

int a,b,c,d,e,f,g,h;
protected:

int x,y,z;
};

We need to achieve the state in which in the derived class
B, the variables a and x have public access, variables y and
z have protected access, all other variables have private
access.

Inheritance, Dynamic Binding

Solution:
class B : private A {
public:

using A::a;
using A::x;

protected:
using A::y;
using A::z;

};

Result:
• a and x are public
• y and z are protected
• b,c,d,e,f,g,h are private

Inheritance, Dynamic Binding

class Square : public Shape2D {
public:

Square(string c="black", int w=0,
int h=0) : Shape2D(c), width(w),
height(h) {}

string getTypeInfo() override {
return string("Square");

}
int area() { return width*height; }

protected:
int width , height;

};

Inheritance, Dynamic Binding

Virtual Functions

Inheritance, Dynamic Binding

Virtual functions:
• The base class defines as virtual those functions that

it expects its derived classes to override
• If a virtual function is called using either a pointer or

a reference, the call is dynamically bound
• A base class specifies that a member function should

be dynamically bound by preceding its declaration
with the keyword virtual

• Any non-static function, other than a constructor, may
be virtual

• The virtual keyword appears only within the
declaration inside the class

• The virtual keyword may not be used in function
definition outside the class body

Inheritance, Dynamic Binding

Virtual functions:
• A function that is declared as virtual in the base

class is implicitly virtual in the derived classes
• Derived classes frequently (but not always) override

the virtual functions that they inherit
• If a derived class does not override an inherited virtual

function, the derived class inherits the version defined
in its base class

• A derived class may include virtual keyword on the
functions it overrides, but is not required to do so

• In order to explicitly note that the derived class
intends a member function to override an inherited
virtual function, the override keyword should be
added after the parameter list or if the member is
const, after the const or reference qualifiers

• Virtual functions are resolved during run-time

Inheritance, Dynamic Binding

Dynamic Binding

Inheritance, Dynamic Binding

Dynamic binding:
• When a virtual function is called using a pointer or a

reference, the call will be dynamically bound
• Depending on the type of the object, to which the

reference or pointer is bound, the function version in
the base class or in one of its derived classes will be
executed

Inheritance, Dynamic Binding

Calling virtual function by reference:
Shape2D s2("white");
Square s3("red" ,10,10);
Shape s, &ref1=s2, &ref2=s3;
cout << s.getTypeInfo() << endl

<< ref1.getTypeInfo() << endl
<< ref2.getTypeInfo() << endl;

Output:
Some shape
2D Shape
Square

Inheritance, Dynamic Binding

Same, but using rvalue initialization:
Shape2D s2("white");
Square s3("red" ,10,10);
Shape s, &&ref1 = Shape2D("white"),

&&ref2 = Square("red" ,10,10);
cout << s.getTypeInfo() << endl

<< ref1.getTypeInfo() << endl
<< ref2.getTypeInfo() << endl;

Output:
Some shape
2D Shape
Square

Inheritance, Dynamic Binding

Using pointers bound to the base class:
unique_ptr <Shape > p1(new Shape());
unique_ptr <Shape > p2(new Shape2D("white"));
unique_ptr <Shape > p3(

new Square("red" ,10,10));
cout << p1->getTypeInfo() << endl

<< p2->getTypeInfo() << endl
<< p3->getTypeInfo() << endl;

Output:
Some shape
2D Shape
Square

Inheritance, Dynamic Binding

Static members and inheritance:
• If a base class defines a static member, there is only

one such member defined for the entire class hierarchy
• Regardless of the number of classes derived from a

base class, there exists a single instance of each static
member

• Static members obey normal access controls

class Base {
public:

static void statmem();
};

class Derived : public Base {
void f(const Derived&);

};

Inheritance, Dynamic Binding

We can prevent a class from being used as a base by
following the class name with the final keyword:
class Square final : public Shape2D {
public:

Square(string c="black", int w=0,
int h=0) : Shape2D(c), width(w),
height(h) {}

string getTypeInfo() override {
return string("Square");

}
int area() { return width*height; }

protected:
int width , height;

};

Inheritance, Dynamic Binding

We can also designate a function as final. Any attempt to
override a function that has been defined as final will be
flagged as an error
class Square final : public Shape2D {
public:

Square(string c="black", int w=0,
int h=0) : Shape2D(c), width(w),
height(h) {}

string getTypeInfo() override {
return string("Square");

}
int area() final { return width*height; }

protected:
int width , height;

};

Inheritance, Dynamic Binding

In some cases, we want to prevent dynamic binding of a
call to a virtual function, we want to force the call to use a
particular version of that virtual. We can use the scope
operator to do so. For example, consider this code:
unique_ptr <Square > ptr(

new Square("green" ,10,10));
cout << ptr->Shape::getTypeInfo() << endl

<< ptr->Shape2D::getTypeInfo() << endl
<< ptr->Square::getTypeInfo() << endl
<< ptr->getTypeInfo() << endl;

Why might we wish to circumvent the virtual mechanism?
The most common reason is when a derived-class virtual
function calls the version from the base class.

Inheritance, Dynamic Binding

Abstract Class

Inheritance, Dynamic Binding

An abstract class is the type that:
• cannot be instantiated
• can be used as the base class
• defines or inherits at least one method marked with

pure virtual modifier (= 0)
• the destructor can be marked pure virtual too!

~Foo() = 0;
• If a derived class inherits a pure virtual method, it

becomes an abstract class as well, unless it overrides
the method and provides its implementation

Inheritance, Dynamic Binding

Interface

Inheritance, Dynamic Binding

Interfaces:
• An interface consists of pure virtual functions
• Each class implementing an interface must override its

pure virtual methods
• There is no way to create an object of an interface

type, as an interface is an abstract base class
• Interfaces specify API call conventions

Inheritance, Dynamic Binding

class Interface {
public:

virtual int foo() = 0;
virtual double bar() = 0;
virtual string baz() const = 0;

};

class Impl : public Interface {
public:

int foo() override { return 0; }
double bar() override { return 0.0; }
string baz() const override { return ""; }

};

Inheritance, Dynamic Binding

Derived to Base Conversion

Inheritance, Dynamic Binding

The derived to base conversion is used to enable dynamic
binding

User code may use it only in the case of public inheritance

If a public member of the base class would be accessible,
then the derived to base conversion is also accessible, not
otherwise

Inheritance, Dynamic Binding

class A {} ;
class B : public A {} ;
class C : protected A{} ;
class D : private A{} ;

int main () {
A ∗b = new B() ; // ok

// 'A' is an inaccessible base of 'C'
A ∗c = new C() ;

// 'A' is an inaccessible base of 'D'
A ∗d = new D() ;

return 0 ;
}

Inheritance, Dynamic Binding

class B : public A {
public:

void foo(const A &a) {}
};

int main() {

// ok, due to public inheritance
B b,c; b.foo(c);

return 0;
}

Inheritance, Dynamic Binding

class B : protected A {
public:

void foo(const A &a) {}
};

int main() {

// error: 'A' is an
// inaccessible base of 'B'
B b,c; b.foo(c);

return 0;
}

Inheritance, Dynamic Binding

class B : private A {
public:

void foo(const A &a) {}
};

int main() {

// error: 'A' is an
// inaccessible base of 'B'
B b,c; b.foo(c);

return 0;
}

Inheritance, Dynamic Binding

The derived to base conversion to a direct base class is
always accessible to members and friends of the derived
class.

Inheritance, Dynamic Binding

class C : protected A {
public :

void f oo (C ∗ other) { A ∗a = other ; }
} ;
class D : private A {
public :

void f oo (D ∗ other) { A ∗a = other ; }
} ;

int main () {

C ∗c = new C() ; c−>foo (new C()) ;
D ∗d = new D() ; d−>foo (new D()) ;

// A is inaccesisble base of C
A ∗a = new C() ;
return 0 ;

}

Inheritance, Dynamic Binding

Member functions and friends of classes derived from B may
use the derived to base conversion if B inherits from A using
either public or protected inheritance.

Inheritance, Dynamic Binding

class A {} ;

class B : public A {} ;

class C : public B {
public :

// ok
// because B inherits A in a public way
void f oo (C ∗ other) { A ∗a = other ; }

} ;

Inheritance, Dynamic Binding

class A {} ;

class B : protected A {} ;

class C : public B {
public :

// ok
// because B inherits A in a protected way
void f oo (C ∗ other) { A ∗a = other ; }

} ;

Inheritance, Dynamic Binding

class A {} ;

class B : private A {} ;

class C : public B {
public :

// error: 'A' is an inaccessible base of 'C'
// because B inherits A in a private manner
void f oo (C ∗ other) { A ∗a = other ; }

} ;

Inheritance, Dynamic Binding

Friendship & Inheritance

Inheritance, Dynamic Binding

Friendship is not inherited

Friends of the base class have no special access to members
of its derived class

Friends of the derived class have no special access to the
base class

Inheritance, Dynamic Binding

class Base {
friend class Pal ;

public :
Base (int priv , int prot)

: base_priv (pr iv) , base_prot (prot) {}
private :

int base_priv ;
protected :

int base_prot ;
} ;

class Base2 {
private :

int base2_priv ;
protected :

int base2_prot ;
} ;

Inheritance, Dynamic Binding

Each class controls access to its own members
class Pal : protected Base {
public:

Pal(int priv , int prot) : Base(priv ,prot) {}

// ok, Pal is a friend
int f(Base b) { return b.base_priv; }

// error: 'int Base2::base2_priv'
// is private because Pal is not
// a friend of Base2
void f2(Base2 b) { return b.base2_priv; }

};

Inheritance, Dynamic Binding

Class D has no access to protected and private members in
Base

class D : public Pal {
public:

// error: 'int Base::base_prot'
// is protected
int mem(Base b) { return b.base_prot; }

};

Inheritance, Dynamic Binding

a remark on

”Inheriting Constructors”

Inheritance, Dynamic Binding

• Introduced in C++11, improved in C++14
• Invalid and misleading term used in literature
• Constructors are NOT inherited!

struct Base {
Base (int a) : i (a) {}
int i ;

} ;

struct Derived : Base {
Derived (int a , std : : s t r ing s) : Base (a) , m(s) {}

using Base : : Base ;
// Inherit Base's constructors. Equivalent to:
// Derived(int a) : Base(a), m() {}

std : : s t r ing m;
} ;

Inheritance, Dynamic Binding

Multiple Inheritance

Inheritance, Dynamic Binding

Multiple inheritance – ability to derive a class from more
than one direct base class
A multiply derived class inherits properties of all its parents
Tricky design-level and implementation-level problems

class Duck : public Bird , public Swimming ,
public Flying {};

class Penguin : public Bird ,
public Swimming {};

class Chicken : public Bird {};

class Cockoo : public Bird , public Flying {};

Inheritance, Dynamic Binding

Constructing an object of the derived type constructs and
initializes all its base sub-objects
The order in which base classes are constructed depends on
the order in which they are listed in the class derivation list

class Duck : public Bird , public Swimming ,
public Flying {

public:
Duck() : Bird(), Swimming(), Flying() {}

};

Inheritance, Dynamic Binding

A class that inherits the same constructor from more than
one base class must define its own version of that
constructor
class Deriv : public Base1 , public Base2 {
public:

using Base1::Base1; // inherit
using Base2::Base2; // inherit
Deriv(const std::string& s) :
public Base1 , public Base2 {};
Deriv() = default;

};

Inheritance, Dynamic Binding

Destructor in derived class is responsible for cleaning up
the resources allocated by that class only

The members of all base classes of the derived class are
automatically destroyed

Destructors are always invoked in the reverse order from
which the constructors are run. In this case
~Flying(),~Swimming(),~Bird()

A pointer or a reference to any of an object’s (accessible)
base classes can be used to point or refer to a derived object

Inheritance, Dynamic Binding

A class can inherit from the same base class more than
once – the diamond problem
This can be achieved via inheriting the same base class
indirectly from its direct base classes
For instance:
iostram --> { istream, ostream } --> basic_ios

basic_ios is inherited twice, but iostream wants to use
the same buffer for IO operations
Virtual inheritance lets a class specify that it is willing to
share its base class
The shared base class sub-object is called a virtual base
class
Derived object contains only one single object for that
virtual base class

Inheritance, Dynamic Binding

class Base {};
class A : public virtual Base {};
class B : virtual public Base {};
class Deriv : public A, public B {};

Inheritance, Dynamic Binding

class Person {
public :

Person (int x) {
std : : cout << "Person::Person(int) called"

<< std : : endl ;
}

} ;

class Faculty : public Person {
public :

Faculty (int x) : Person (x) {
std : : cout << "Faculty::Faculty(int) "

<< "called" << std : : endl ;
}

} ;

Inheritance, Dynamic Binding

class Student : public Person {
public:

Student(int x):Person(x) {
std::cout << "Student::Student(int) "

<< "called" << std::endl;
}

};

class TA : public Faculty , public Student
{
public:

TA(int x): Student(x), Faculty(x) {
std::cout << "TA::TA(int) called"

<< std::endl;
}

};

Inheritance, Dynamic Binding

int main() {
TA ta1(30);

}

Output:
Person::Person(int) called
Faculty::Faculty(int) called
Person::Person(int) called
Student::Student(int) called
TA::TA(int) called

Constructor of Person is called two times.
Destructor of Person will be called two times when object
ta1 is destructed.
Object ta1 has two copies of all members of Person, this
causes ambiguities.

Inheritance, Dynamic Binding

Solution:

Make the classes Faculty and Student as virtual base
classes to avoid two copies of Person in TA class.

class Person {
public :

Person (int x) {
std : : cout << "Person::Person(int) "

<< "called" << std : : endl ;
}

Person () {
std : : cout << "Person::Person() "

<< "called" << std : : endl ;
}

} ;

Inheritance, Dynamic Binding

class Faculty : public virtual Person {
public :

Faculty (int x) : Person (x) {
std : : cout << "Faculty::Faculty(int) "

<< "called" << std : : endl ;
}

} ;

class Student : public virtual Person {
public :

Student (int x) : Person (x) {
std : : cout << "Student::Student(int) "

<< "called" << std : : endl ;
}

} ;

Inheritance, Dynamic Binding

class TA : public Faculty , public Student {
public :

TA(int x) : Student (x) , Faculty (x) {
std : : cout << "TA::TA(int) called"

<< std : : endl ;
}

} ;

int main () {
TA ta1 (3 0) ;

}

Output:
Person::Person() called
Faculty::Faculty(int) called
Student::Student(int) called
TA::TA(int) called

Inheritance, Dynamic Binding

Person::Person() called <----- NOTICE THAT!
Faculty::Faculty(int) called
Student::Student(int) called
TA::TA(int) called

When virtual inheritance is used, the default constructor
of grandparent class is called by default even if the parent
classes explicitly call parameterized constructor.

How to call the parametrized constructor of the Person
class?

The constructor has to be called in TA class.

Inheritance, Dynamic Binding

class TA : public Faculty , public Student
{
public:

TA(int x) : Student(x), Faculty(x),
Person(x) {

std::cout << "TA::TA(int) called"
<< std::endl;

}
};

Output:
Person::Person(int) called <--- SEE?
Faculty::Faculty(int) called
Student::Student(int) called
TA::TA(int) called

Inheritance, Dynamic Binding

REMARK

In general, it is not allowed to call the grandparent’s
constructor directly, it has to be called through parent
class. It is allowed only in the case of virtual inheritance.

Inheritance, Dynamic Binding

Cross–Delegation
aka delegation to sister class

Inheritance, Dynamic Binding

class Base {
public :

virtual void f oo () = 0 ;
virtual void bar () = 0 ;

} ;

class A : public virtual Base {
public :

void f oo () ov e r r i d e ;
} ;

class B : public virtual Base {
public :

void bar () o v e r r i d e ;
} ;

void A: : foo () { this−>bar () ; }

Inheritance, Dynamic Binding

void B : : bar () {
std : : cout << "B::bar() is called"

<< std : : endl ;
}

class C : public A, public B {} ;

int main () {
(new C())−> foo () ;
return 0 ;

}

Output:
B::bar() is called

Inheritance, Dynamic Binding

What did just happen?
When A::foo() calls this->bar(), it ends up calling
B::bar().

This way, a class, that A knows nothing about, supplies the
override of a virtual function invoked by A::foo(). This
becomes possible due to virtual inheritance.

Inheritance, Dynamic Binding

	Inheritance, Dynamic Binding
	Inheritance, Dynamic Binding

