
UPPAAL

Evelin Halling
06.02.2013

Introduction

 UPPAAL is a tool for modeling, validation and
verification of real-time systems.

 Appropriate for systems that can be modeled as a
collection of non-deterministic processes with finite
control structure and real-valued clocks (i.e. timed
automata)

 UPPAAL = UPP (Uppsala University) + AAL
(Aalborg University).

 http://www.uppaal.org

Introduction

 It serves as a modeling or design language to
describe system behavior as networks of automata
extended with clock and data variables.

 It used to make a simulation of the system and
check if there is an error in the system.

 Communication is through channels and (or) shared
data structures.

 Typical application areas:
- Real-time controllers
- Communication protocols
- Other systems in which timing aspects are critical

UPPAAL Tool Parts

 Graphical user interface (GUI)
- Used for modeling, simulation, and verification. Uses
the verification server for simulation and verification.

 Verification server
- Used for simulation and verification. In simulation, it is
 used to compute successor states.

 A command line tool
- A stand-alone verifier, appropriate for e.g. batch
 verifications.

Editor

Simulator
Variable values

System

Controls Synchronization History

Simulation

 Step-by-step simulation
- Good for observations of variable values at each step

- Manually selecting transitions (when many are
 enabled)

- Good for tracing errors

 Automatic simulation
- Good for observing overall system behavior

 Saving/Opening Simulation Traces

Exactly one per Template

Freeze time; i.e. time
is not allowed to pass
 when a process is

in an urgent location.

 Like urgent locations,
 committed locations
 freeze time. Furthermore,
 if any process is in a
 committed location, the
 next transition must
 involve an edge from
 one of the committed
 locations.

Conjunction of simple
conditions on clocks,

differences between clocks,
 and boolean expressions

not involving clocks.
The bound must be given
 by an integer expression.

Lower bounds on clocks are
 disallowed. States which
violate the invariants are
undefined; by definition,

 such states do not exist.

Locations

Locations can have
an optional name.
The name must be a
valid identifier.

An edge is enabled in a
 state if and only if the
guard evaluates to true.

Processes can synchronize
over channels. Edges labeled
 with complementary actions

over a common channel
synchronize (press! press?).

When executed, the
update expression of
the edge is evaluated.
The side effect of this
expression changes

the state of the system.

Selections are
randomized initialization

of some variable in a
range whenever an
edge is executed.

The other three labels
of an edge are within

 the scope of this binding.
 E.g., “i: int[3,5]” – randomly

set i to be between
3 to 5, inclusively.

Edges

The Light Controller Example
Figure (a) shows a timed automaton modelling a simple lamp. The lamp has three
locations: OFF, ON, and BRIGHT. If the user presses a button, i.e., synchronises
with press? , then the lamp is turned on. If the user presses the button again, the
lamp is turned off. However, if the user is fast and rapidly presses the button
twice, the lamp is turned on and becomes bright.
The user model is shown in figure (b). The user can press the button randomly at
any time or even not press the button at all. The clock x of the lamp is used to
detect if the user was fast (y <= 3) or slow (y > 3).

(a) Lamp. (b) User.

Variables
 Integer – int (range -32768 … 32767)

int n1, n2;
int[0,300] n1; --- variable in range 0-300
int n[2][3];
int[0,5] n1 = 0;

 Boolean – bool (True (1), False (0))
bool y = true;
bool b[4]; --- array of 4 elements

 Constant
const int a=5; const bool b = fase;

Variables
 Clock - clock

clock cl1, cl2;
 Channel – chan (used to synchronize two

processes)
chan ch;

 ch! – sending
ch? – receiving

 Broadcast channels
 Urgent channels – higher priority, clock guard

not allowed.

Verifier

Query in Uppaal

 E - exists a path (“E” in UPPAAL).
 A - for all paths (“A” in UPPAAL).
 [] – all states in a path
 <> - some states in a path

The following combination are supported:
 A[], A<>, E<>, E[].

E<> p – “p Reachable”

E<> p – it is possible to reach a state in
which p is satisfied.

P is true in (at least) one reachable state.

A[] p – “Invariantly p”

A[] p – p holds invariantly.

P is true in all reachable states.

A<> p – p will inevitable become true
 The automaton is guaranteed to eventually

reach a state in which p is true.

P is true in some state of all paths.

A<> p – “Inevitable p”

E[] p – p is potentially always true.

There exists a path in which P is true in all
states.

E[] p – “Potentially Always p”

p --> q – if p becomes true, q will inevitably
become true.

 Same as A[](p imply A<> q)

p → q – “p lead to q”

Specifying Properties
 A[] not deadlock
 - no deadlocks

- true

 E[] L.OFF
 - is it possible that the the light is always OFF

- true

 E<> (L.ON and L.x >3)
 - it is possible that the light isn't pressed a second time within 3 seconds after it’s

 turned on
- true

 A<> L.OFF
 - no matter how your operate the light, it will go to OFF

- true

 A<> L.BRIGHT
 - no matter how your operate the light, it will go to BRIGHT

- false

