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Reminder

The goal is to cluster the data into K clusters, whereas no labeled
data are given.

I Case of unsupervised learning.

I K is the hyperparameter.



Probability versus Likelihood

I Data is fixed: How likely certain set of parameters will result
given data set.

I Parameters are fixed: What is the probability of drawing
given data set with the given set of parameters.



Maximal likelihood estimate

Sometimes referred as maximal likelihood principle.
More formally

I

L(θ | x) = P (x | θ)

I The goal is to find parameters that maximize the likelihood.

I In many cases natural logarithm of the likelihood function is
more easy to deal with. Introduce log-likelihood.



Sufficient statistics

Definition
A statistic T (X) is sufficient for the parameter θ if the conditional
probability distribution of the data X, given the statistic T (x)
does not depend on the parameter θ

P (X = x | T (X) = t, θ) = P (X = x | T (X) = t).

I A statistic is sufficient for a family of probability distributions
if the sample from which it was calculated gives no additional
information.

I In other words. The value of the sufficient statistic (for the
parameter) contains all the necessary information to calculate
estimate of the parameter.



Gaussian

I One-dimensional
I Do you remember a bell shaped curve?
I Parameterized by mean µ and variance σ2

I Probability density function (pdf):

p(x | µ, σ2) =
1√

2πσ2
exp− (x− µ)2

2σ2

I D-dimensional: Parameterized by mean vector µ and the
covariance matrix Σ.

p(x | µ,Σ) =
1

(2π)D/2
| Σ |1/2 exp

[
−1

2
(x−µ)TΣ−1(x−µ)

]
I Derive for the 2- and 3- dimensional cases.



Fitting a Gaussian

Let us suppose, that a sample of n points X = (x1, . . . , xn)T were
independently drawn from some Gaussian.
The goal is to find the mean and the variance of the Gaussian.
(Fitting the Gaussian model to the data.)

I Sample mean is used as the estimate of the mean for the
Gaussian

µ̂ =
1

n

n∑
i=1

xi

I sample variance is used as the estimate of the variance of the
Gaussian

σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2

Why such estimates are correct?



Example

Consider one dimensional Gaussian: Let us suppose that data
points in the sample are drawn independently then the probability
of data is:

P (X | µ, σ2) =

n∏
i=1

P (xi | µ, σ2)

= . . . =
1

(2πσ2)
n
2

e

−
1

2σ2

n∑
i=1

(xi − µ)2

As a next step: compute log - likelihood

logP (X | µ, σ2) = −n
2

log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − µ)2



Example

logP (X | µ, σ2) = −n
2

log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − µ)2

The last term

n∑
i=1

(xi − µ)2 =

n∑
i−1

x2
i − 2µ

n∑
i=1

xi + nµ2

Likelihood depends on the sample only through
∑n

i−1 x
2
i and∑n

i=1 xi which are sufficient statistics in this case.



Estimate of the mean µ

Find the partial derivative with respect to µ:

∂ logP (X | µσ2)

∂µ
=

1

σ2

( n∑
i=1

xi − nµ
)

Solve the following equation with respect to µ.

1

σ2

( n∑
i=1

xi − nµ
)

= 0⇒ µ̂ =
1

n

n∑
i=1

xi.



Estimate of the variance σ2

Find the partial derivative with respect to σ2:

∂P (X | µ, σ2)

∂σ2
=

1

2σ4

n∑
i=1

(xi − µ)2 − n

2σ2

Solve the following equation with respect to σ2

1

2σ4

n∑
i=1

(xi − µ)2 − n

2σ2
= 0⇒ σ̂2 =

1

n

n∑
i=1

(xi − µ)2.



Multivariate case

I Mean estimate

µ̂ =
1

n

n∑
i=1

xi.

I Sample covariance

Σ̂ =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)T .



Latent Variable Models

Latent Variable Models (LVM) - models with hidden variables.
An important assumption is that observed variables are correlated
because they arise from a hidden common ”cause”. Let
zi,1, . . . , zi,L are L latent variables, and xi,1, . . . , xi,D are D visible
variables.
The form of the likelihood L(xi | zi) and the prior p(zi) defines the
model.



Mixture models

Let zi = {1, . . . ,K}, - discrete latent states.

p(zi) = Cat(π)

L(xi | zi = k) = pk(xi)

Overall model is known as Mixture model (we are mixing together
K base distributions)

p(xi | θ) =

K∑
k=1

πkpk(xi | θ)

where mixed weights πk satisfy 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1



Mixture of Gaussians

Mixture of Gaussian (MOG) is the most widely used mixture
model. Each base distribution is a multivariate Gaussian with
mean µk and covariance matrix Σk

p(xi | θ) =

K∑
k=1

πkN (xi | µk,Σk)



Mixture of Gaussians

I Latent variables zi : zi = k component k generated point
xi.

I p(zi = k | π) = πk - probability of being generated by a
component.

I p
(
xi | zi = k,µ,Σ

)
= N

(
xi | µk, σk

)
- probability of a given

point whereas it is known which component generated it.

I p
(
xi, zi = k | π,µ,Σ

)
= πkN

(
xi | µk,Σk

)
- joint probability

of generating the component and the point from it.

I p
(
xi | π,µ,Σ

)
=

K∑
k=1

πkN
(
xi | µk,Σk

)
- marginal probability

of the point.



Parameter estimation for Gaussian Mixture Models

I The goal is to estimate parameters:
π,µk,Σk, k = 1, . . . ,K

I The log-likelihood function of GMM is

log p
(
X | π,µ,Σ

)
=

n∑
i=1

log
( K∑
k=1

πkN (xi | µk,Σk)
)

I Possible problems:
I Unidentifiability: K-component mixture has K! possible

labeling therefore there is no unique maximal likelihood
estimate and in turn no unique maximum a posterior estimate.

I Summation inside the logarithm ... .



Observe

I The knowledge of component parameters and mixing
proportions allows to compute the probability that the
component k responsible 1 for the i-th point
p(zi = k | xi,π,µ,Σ).

I The knowledge of the responsibilities allows to compute the
estimates for the mixing coefficients πk.

I The knowledge of responsibilities and mixing coefficients
allows to compute the estimates for component means µk and
variances Σk

This leads the idea of two step iterative algorithm:

I Step E: Inferring the missing values given the parameters.

I Step M: Optimization of the parameters given the ”filled
data”.

1Responsibility of the cluster k for point i is the posterior probability that
point i belongs to cluster k, p(zi = k | xi,θ)



EM-algorithm

Let us consider K-Means from the probabilistic point of view.

I (E-step) Each data point of the set D has a probability
belonging to cluster j, which is proportional to the scaled and
exponentiated Euclidean distance to each representative Yj .
In the k-means algorithm, this is done in a ”hard” way, by
choosing the smallest Euclidean distance to the representative
of Yj .

I (M-step) The center Yj is the weighted mean over all the data
points where the weight is defined by the probability of
assignment to cluster j. The hard version of this is used in
k-means, where each data point is either assigned to a cluster
or not assigned to a cluster (i.e., 0-1 probabilities).



EM-algorithm

Assumption: the data was generated from a mixture of k
distributions with probability distributions G1 . . .Gk. Each
distribution Gi represents a cluster and is also referred to as a
mixture component.

I (E-Step) Given the current value of the parameters in ,
estimate the posterior probability P (Gi|Xj ,Θ) of the
component Gi having been selected in the generative process,
given that we have observed data point Xj . The quantity
P (Gi|Xj ,Θ) is also the soft cluster assignment probability
that we are trying to estimate. This step is executed for each
data point Xj and mixture component Gi.

I (M-Step) Given the current probabilities of assignments of
data points to clusters, use the maximum likelihood approach
to determine the values of all the parameters in Θ that
maximize the log-likelihood fit on the basis of current
assignments.



EM-algorithm implementation

In order to avoid confusion let us simplify the notation.
I Intialization

I Randomly select the data points to use the means
I Set the covariance matrix for each cluster to be equal to

covariance matrix of the full training set.
I Give each cluster equal prior probabilities ϕj

I Expectation: Calculate the probability that each data point
belongs to each cluster. Remind how to compute the
probability density function:

gj(x) =
1

(2π)n|Σj |
e−

1
2

(x−µj)T Σ−1
j (x−µj)

then the probability of a given point to belong to cluster j is
given by

w
(i)
j =

gj(x)ϕj∑k
l=1 gl(x)ϕl



EM-algorithm implementation

I Maximization: update rules:

ϕj =
1

m

m∑
i=1

w
(i)
j ,

µj =

m∑
i=1

w
(i)
j x

(i)

m∑
i=1

w
(i)
j

Σj =

m∑
i=1

w
(i)
j (x(i) − µj)(x(i) − µj)T

m∑
i=1

w
(i)
j


