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Local search algorithms and optimization

m Systematic search algorithms

Q

to find (or given) the goal and to find the path to that goal

m Local search algorithms

Q
Q
Q

the path to the goal is irrelevant, e.g., n-queens problem
state space = set of “complete” configurations

keep a single “current” state and try to improve it, e.g., move to its
neighbors

Key advantages:

m use very little (constant) memory

m find reasonable solutions in large or infinite (continuous) state spaces
(pure) Optimization problem:

m to find the best state (optimal configuration ) based on an objective
function, e.g. reproductive fitness — Darwinian, no goal test and path cost



Local search — example

Put n queens on an n X n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts
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Local search — state space landscape

0 elevation = the value of the objective function or heuristic cost function
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0 A complete local search algorithm finds a solution if one exists

0 A optimal algorithm finds a global minimum or maximum



Hill-climbing search

m moves in the direction of increasing value until a “peak”

0 current node data structure only records the state and its objective
function

0 neither remember the history nor look beyond the immediate neighbors
0 like climbing Mount Everest in thick fog with amnesia

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < MAKE-NODE(INITIAL-STATE[proplem])
loop do

neighbor +— a highest-valued successor of current

if VALUE[neighbor] < VALUE[current] then return STATE[current]

current + neighbor
end




Hill-climbing search

m moves in the direction of increasing value until a “peak”

0 current node data structure only records the state and its objective
function

0 neither remember the history nor look beyond the immediate neighbors
like climbing Mount Everest in thick fog with amnesia

—

def hill climbing(problem):
"""From the initial node, keep c
stopping when no neighbor is bet
current = Node (problem.initial)
hile True:
neighbors = current.expand (problem)
1f not neighbors:
break
neighbor = argmax random tle(nelghbors
lambda node: problem.value (node.state))
1f problem.value (neighbor.state) <= problem.value (current.state):

break
current = neighbor
return current.state

ho cdlng the neighbor with highest value,
t [Flg 4 2]""11



Hill-climbing search - example

m complete-state formulation for 8-queens

0 successor function returns all possible states generated by moving a single
gueen to another square in the same column (8 x 7 = 56 successors for each
state)

0 the heuristic cost function h is the number of pairs of queens that are attacking
each other
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Hill-climbing search — greedy local search

m Hill climbing, the greedy local search, often gets stuck

0 Local maxima: a peak that is higher than each of its neighboring
states, but lower than the global maximum

0 Ridges: a sequence of local maxima that is difficult to navigate

objectivg function global maximum
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local maximum

"flat” local maximum

-state space
current
state

0 Plateau: a flat area of the state space landscape
m a flat local maximum: no uphill exit exists
m ashoulder: possible to make progress

0 can only solve 14% of 8-queen instance but fast (4 steps to S and 3 to F)



Hill-climbing search — improvement

m Allows sideways move: with hope that the plateau is a shoulder
0 could stuck in an infinite loop when it reaches a flat local maximum
0 limits the number of consecutive sideways moves
0 can solve 94% of 8-queen instances but slow (21 steps to S and 64 to F)

m Variations

0 stochastic hill climbing
m chooses at random; probability of selection depends on the steepness
0 first choice hill climbing
m randomly generates successors to find a better one
2 All the hill climbing algorithms discussed so far are incomplete
m fail to find a goal when one exists because they get stuck on local maxima
0 Randome-restart hill climbing
m conducts a series of hill-climbing searches; randomly generated initial states
0 Have to give up the global optimality

m landscape consists of a large amount of porcupines on a flat floor
m NP-hard problems



Simulated annealing search

2 combine hill climbing (efficiency) with random walk (completeness)

0 annealing: harden metals by heating metals to a high temperature and
gradually cooling them

0 getting a ping-pong ball into the deepest crevice in a humpy surface
m shake the surface to get the ball out of the local minima
m not too hard to dislodge it from the global minimum

o simulated annealing:

m start by shaking hard (at a high temperature) and then gradually reduce
the intensity of the shaking (lower the temperature)

m escape the local minima by allowing some “bad” moves
m but gradually reduce their size and frequency



Simulated annealing search - Implementation

function SIMULATED- ANNEALING( pToblem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current + MAKE-NODE(INITIAL-STATE[prob lem))

for i+ 1to oo do
T+ schedule]i]
if T= 0 then return current
next+—a randomly selected successor of current
AF + VALUE[nezt] = VALUE[current]
if AE > 0 then current + next

else current < next only with probability e /T

0 Always accept the good moves AE >0

0 The probability to accept a bad move
m decreases exponentially with the “badness” of the moveAE <0
m decreases exponentially with the “temperature” T (decreasing)

0 finds a global optimum with probability approaching 1 if the schedule
lowers T slowly enough
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Simulated annealing search - Implementation

simulated_annealing(problem, schedule=exp schedule()):
"[Fig. 4.5]"
current = Node (problem.initial)
“or € in xrange(sys.maxint):
T = schedule (t)]
1f T == 0:
return current
neighbors = current.expand (problem)
1f not neighbors:
return current
next = random.choice (neighbors)
delta e = problem.value(next.state) - problem.value(current.state)

1f delta e > 0 or probability(math.exp(delta e/T)):
current = next

0 Always accept the good moves AE >0

0 The probability to accept a bad move
m decreases exponentially with the “badness” of the moveAE <0
m decreases exponentially with the “temperature” T (decreasing)

0 finds a global optimum with probability approaching 1 if the schedule
lowers T slowly enough



Local beam search

0 Local beam search: keeps track of k states rather than just one
m generates all the successors of all k states
m selects the k best successors from the complete list and repeats

m quickly abandons unfruitful searches and moves to the space where the
most progress is being made

— “Come over here, the grass is greener!”
m lack of diversity among the k states

0 stochastic beam search: chooses k successors at random, with the
probability of choosing a given successor having an increasing value

0 natural selection: the successors (offspring) if a state (organism)
populate the next generation according to is value (fitness).



Search with nondeterministic actions
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AND-OR trees
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Depth first AND-OR tree search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem.INITIAL-STATE, problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state 1s on path then return failure
for each action in problem.ACTIONS(state) do
plan — AND-SEARCH(RESULTS(state, action), problem, [state | path])
if plan # failure then return [action | plan]
return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
for each s; in states do
plan, <— OR-SEARCH(s;, problem, path)
if plan, = failure then return failure
return [if s; then plan, else if s; then plan, else .. .if s, , then plan,,_, else plan, ]



Slippery Vacuum World
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