
Signatures and Hash Functions

Ahto Buldas Aleksandr Lenin

Nov 18, 2019

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 1 / 44

Digital Signature Scheme

Involves three algorithms:

G (key-generation): generates a public key pk, and a corresponding private
key sk

S (signing): on input the private key sk and a message m generates the
signature s← S(sk,m)

V (verifying): on input the public key pk, a message m, and a signature s,
either accepts or rejects

Correctness:

P[(pk, sk)← G,V (pk,m, S(sk,m)) = 1] = 1 .

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 2 / 44

Notions of Security: Attack Types

In 1988, Goldwasser, Micali, Rivest
described attack types for digital sig-
natures:

Key-only attack (KOA): adversary only has pk

Known message attack (KMA): adversary has valid signatures for a list of
messages not chosen by adversary.

Adaptive chosen message attack (CMA): adversary learns signatures for
arbitrary messages chosen by adversary.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 3 / 44

Notions of Security: Attack Results

Goldwasser, Micali, Rivest (1988):

Total break (TB): recovery of the signing key.

Universal forgery (UF): ability to forge signatures for any message.

Selective forgery (SF): a signature on a message of the adversary’s choice.

Existential forgery (EF): a valid message/signature pair not already known
to the adversary.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 4 / 44

EF-CMA Security

The strongest notion: security against existential forgery under an
adaptive chosen message attack.

1 Sample key (sk, pk)← G

2 Run the adversary (m, s)← AS(sk,·)(pk)

The adversary A is successful if V (pk,m, s) = 1 and A never queried
S(sk,m).

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 5 / 44

Plain RSA Signatures

sk – RSA secret key (n, d), where n is the modulus and d is private
exponent

pk – RSA public key (n, e), where e is the public exponent

S(sk,m) = md mod n

V (pk,m, s) = 1 if and only if se mod n = m

Not EF-CMA secure: Adversary, without making any S-queries:

1 Chooses s

2 Computes m← se mod n

3 Outputs (m, s)

Secure RSA signatures use paddings: s = P (m)d mod m

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 6 / 44

Signing Long Messages with Hash Functions

H : {0, 1}∗ → {0, 1}k converts any message m to a k-bit hash H(m)

Hash and Sign paradigm: Messages are hashed before applying the
signature function S

s← S(sk, H(m))

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 7 / 44

Hash Functions

A hash function converts a large, possibly variable-sized amount of data
into a small datum (hash) that may serve as an index to an array.

Hash functions are mostly used to accelerate table lookup or data
comparison tasks—such as finding items in a database, detecting
duplicated or similar records in a large file, finding similar stretches in DNA
sequences, etc.

With a hash function in use, we can check the presence of an item in a
database with just one single lookup!

The idea was proposed in the 1950s, but the design of good hash
functions is still a topic of active research.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 8 / 44

Collisions

A hash function may map two or more keys to the same hash value—this
is what we call a collision. In most applications, it is desirable to minimize
the occurrence of collisions, which means that the hash function must map
the keys to the hash values as evenly as possible.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 9 / 44

Birthday Paradox

Birthday paradox: For randomly chosen 25 people, very likely we have two
with the same birthday.

NB! This does NOT mean that if you are among those people, you will
very likely find someone with the same birthday!

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 10 / 44

How many different hash values do we need?

How large hash values should we use for uniquely identifying N items?

Answer: for a good hash function, we need about N2 different hash values.

If N = 2256 documents will be created all over the world during the
existence of mankind, we need about 2 · 256 = 512 output bits to identify
them uniquely.

Eddington number: number of protons in the observable universe is about

1.57 · 1079 ≈ 136 · 2256 .

This is still just a small fraction of all possible 40 byte sequences!

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 11 / 44

Modeling Hash Functions With Random Oracles

The values of a good hash function are distributed as evenly as possible.
A good hash function is modeled as a random function (a random
oracle)—the computation of hash value is replaced with a uniformly
random choice (all hash values occur with the same probability 1/M).

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 12 / 44

Bounds for Collision Probability

Say we have N files and the hash function has k output bits, i.e. there are
M = 2k possible hash values. If the hash function is modeled as a random
oracle, the probability P (N,M) that all N files have different hash values
has the following bounds:

1− N(N − 1)

2M
≤ P (N,M) ≤ e−

N(N−1)
2M .

Homework exercise: Show that P (N,M) can only decrease if the hash
function deviates from random oracle, i.e. the output probabilities differ
from 1

M .

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 13 / 44

A Useful Inequality from Calculus

We used the inequality 1 + x ≤ ex that holds for all real x. This also
means that 1− x ≤ e−x.

The inequality holds because ex is convex and 1 + x is the tangent line of
ex at x = 0.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 14 / 44

Upper Bound

For the upper bound, we use the observation that

P (N,M) =

(
1− 1

M

)
·
(
1− 2

M

)
· . . . ·

(
1− N − 1

M

)
≤ e−1/M · e−2/M · . . . · e−(N−1)/M = e−(1+2+...+N−1)/M

= e−N(N−1)/2M .

Explanation: We compute the hashes of the N files one by one,
considering each hash computation as a uniformly random selection of a
hash value. Before the i-th selection, we already have i− 1 selected hash
values and the probability that the new hash is one of those is i−1

M .

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 15 / 44

Lower Bound

To get a lower bound for P (N,M), we first observe that for any pair of
files, the probability that they have the same hash is 1/M . As there are
N(N − 1)/2 pairs, the probability of having a collision is upper bounded

by N(N−1)
2M and hence,

P (N,M) ≥ 1− N(N − 1)

2M
.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 16 / 44

Examples

For large N ≈
√
M , we have

1

2
≤ lim

M→∞
P (
√
M,M) ≤ e−1/2 ≈ 0.6065306597 .

For the Birthday paradox, we set N = 25 and M = 365 and get

P (N,M) ≤ 0.4395878005 .

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 17 / 44

Cryptographic Hash Functions

We study how to protect the uniqueness of identifiers against malicious
behavior of users.

Cryptographic hash functions are designed for this purpose.

We describe the main properties that are required from cryptographic hash
functions.

We go through some examples to show where these security properties are
needed in practice.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 18 / 44

Three Main Security Properties

Cryptographic hash functions are designed for having the following security
properties:
◦ One-wayness—hardness of finding a message given its hash.

◦ Second pre-image resistance—hardness of modifying a message without

changing its hash.
◦ Collision-freeness—hardness of finding two different messages with the

same hash.
Collision freeness is the strongest requirement of the three, because the
adversary has the largest degree of freedom.
Note that CRC32 does NOT meet any of the three requirements! It is
intended to fight against occasional errors, not malicious attacks.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 19 / 44

One-Wayness (or Pre-Image Resistance)

Given a hash h(X) of a randomly chosen input X, it is hard to find an
input X ′ with the same output h(X ′) = h(X). Here, X is not known to
the adversary!

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 20 / 44

Second Pre-Image Resistance

Given a randomly chosen input X, it is hard to find a different input
X ′ 6= X with the same output h(X ′) = h(X). Here, X is known to the
adversary!

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 21 / 44

Collision Resistance (or Collision-Freeness)

It is hard to find two distinct inputs X 6= X ′ with the same output
h(X ′) = h(X).

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 22 / 44

Examples for One-Wayness and Second Pre-Image
Resistance

We need one-wayness in a situation, where X contains secret data. We
have to uniquely identify X but do not want that the identifier reveals the
contents of X.

We need second pre-image resistance if we want to protect a public
document X from malicious modifications.

For example, if we keep the hash h(X) of X in a safe place, it should be
impossible to create a modified document X ′ with the same hash, because
then the modifications were undetectable.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 23 / 44

Digital Signatures and Collision Resistance

We create two contracts X and X ′ with the same hash, where X ′ is
clearly favorable to us.

We show X to our partner who then signs the hash h(X).

Later, we show X ′ in court with the partner’s signature on h(X ′) = h(X)
and claim that he/she accepted the conditions of X ′.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 24 / 44

Additional Remark about Digital Signatures

It may seem that in the last example, we can overcome such a situation by
stating (in law) that a signature that uses h is invalid whenever one comes
up with a collision for h.

However, this would lead to another way of deception.

We prepare two contracts X and X ′, where X is the contract we actually
sign and X ′ is another contract with the same hash h(X ′) = h(X) but
which is much more profitable to us than X.

We later deny having signed X by showing the other version X ′ and
claiming that we wanted to sign X ′

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 25 / 44

Relations Between the Security Properties

It turns out that some of the security properties for hash functions can be
derived from others.

We prove that the collision-resistance is the strongest of the three

It implies both the one-wayness and the second pre-image resistance.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 26 / 44

Relative Security Proofs by Reductions

To prove relations between security properties, we use reductions.

To prove that property P implies property Q, we use the contraposition:

If there is an efficient A that breaks Q, we construct an efficient A′ that
breaks P.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 27 / 44

Collision Resistance Implies Second Pre-Image Resistance

Every adversary A that finds second pre-images for h can be modified to a
collision finding adversary A′:
◦ A′ first generates a random input X and then

◦ uses A to find an X ′ 6= X such that h(X ′) = h(X).

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 28 / 44

Collision Resistance Implies One-Wayness ...

... if the hash function is sufficiently compressing. Every adversary A that
is able to invert h can be modified to a collision finding adversary A′:
◦ A′ generates a random X, computes y = h(X) and

◦ uses A to find X ′ such that h(X ′) = h(X).

If h is sufficiently compressing then Pr[X ′ = X] is small. Hence, A′ very
likely finds a collision when A is successful.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 29 / 44

Mathematical Details

X ′ depends on X, and hence, X and X ′ are not independent variables.

However, if the output value y is fixed then X ′ is independent of X.

Hence, the work of A′ is equivalent to the next (inefficient!) procedure:

1 Choose a uniformly random input Z and compute y = h(Z)
2 Choose a uniformly random X from the h-preimage of y
3 Apply A to obtain X ′ = A(y).

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 30 / 44

The steps 2 and 3 are independent random choices and hance the
probability C(y) that a collision is produced for y is:

C(y) = Pr[A inverts y] · Pr[X 6= X ′] = Pr[A inverts y] · |h
−1(y) | −1
|h−1(y) |

= Pr[A inverts y] ·
(
1− 1

|h−1(y) |

)
.

The overall success δA′ of A′ is the average of this probability:

δA′ =
∑
y

Pr[y] · C(y) =
∑
y

Pr[y] · Pr[A inverts y] ·
(
1− 1

|h−1(y) |

)
=

∑
y

Pr[y] · Pr[A inverts y]︸ ︷︷ ︸
δA

−
∑
y

Pr[A inverts y] · Pr[y] · 1

|h−1(y) |︸ ︷︷ ︸
1/N

= δA −
1

N
·
∑
y

Pr[A inverts y]︸ ︷︷ ︸
≤M

≥ δA −
M

N
,

where δA is the success probability of A, and N,M are the input set size
and the output set size, respectively.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 31 / 44

Insufficiently Compressing Hash Functions

Insufficiently compressing function can be collision-free but not one-way.

If there exists a collision free hash function h [with (k − 2)-bit output]
then there exists a function h′ that is collision-free but not one-way.

We define h′ : {0, 1}k → {0, 1}k−1 as follows:

h′(x) =

{
1‖z, if x = 11z
0‖h(x), otherwise

◦ Finding collisions for h′ is as hard as finding collisions for h.

◦ Inverting h′ is relatively easy, because with probability 1/4, a random x

is of the form 11z and the output 1z of h′ completely reveals the input.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 32 / 44

Provably Secure vs Practical Hash Functions

We study two main goals when constructing a hash function.

Provably secure hash functions are more reliable but inefficient.

In practice, we use more efficient ad hoc designs, which have no
guarantees against discovering more and more efficient attacks.

We present some basic ideas how to construct provably secure hash
functions.

We characterize practical hash functions and summarize how secure some
of them are, considering the known attacks against them.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 33 / 44

Provably Secure Hash Functions: the Idea

The security of a hash function h can be based on a hard mathematical
problem if we can prove that finding collisions for h is as hard as solving
the problem.

This gives us much stronger security than just relying on complex mixing
of bits.

A cryptographic hash function h has provable security against collision
attacks if finding collisions is reducible to a problem P which is supposed
not to be efficiently solvable. The function h is then called provably secure.

Proof by Reduction: If finding collisions if feasible by algorithm A, we
could find and use an efficient algorithm S (that uses A) to solve P , which
is supposed to be unsolvable. That is a contradiction. Hence, finding
collisions cannot be easier than solving P .

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 34 / 44

Some Hard Mathematical Problems for Provably Secure
Hashing

Provably secure hash functions are based on hard mathematical problems
that are mostly related to well-known mathematical functions.
Some problems, that are assumed not to be efficiently solvable:
◦ Discrete Logarithm Problem: Given ax mod p, find x, where p is a large

prime number.
◦ Finding Modular Square Roots: Given a2 mod n, find a, where n is a

hard to factorize composite number.
◦ Integer Factorization Problem: Given n = p · q, find p and q, where p, q

are two large primes.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 35 / 44

Example of a Provably Secure Hash Function

Modular exponent function:

h(x) = ax mod n,

where n is a hard to factor composite number, and a is a pre-specified
base value.

A collision ax ≡ ax′ (mod n) reveals a multiple x− x′ of the order of a
(in the multiplicative group of residues modulo n). Such information can
be used to factor n assuming certain properties of a.

Such an h is inefficient because it requires 1.5 multiplications per input-bit.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 36 / 44

Design Principles for Practical Hash Functions

Practical hash functions are combinations of bit operations which are hard
to study, partly because of their ”ugly” mathematical properties.

The avalanche criterion requires that if an input is changed slightly (for
example, flipping a single bit) the output must change significantly (e.g.,
many output bits flip). First used by Horst Feistel (1915-1990).

The Strict avalanche criterion (SAC) is a generalization of the avalanche
criterion. It is satisfied if, whenever a single input bit is complemented,
each of the output bits changes with probability 1

2 . Introduced by Webster
and Tavares in 1985.

The bit independence criterion (BIC)—two output bits should change
independently when any single bit (not among these two) is inverted.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 37 / 44

Merkle-Damg̊ard Design

A hash function must be able to process an arbitrary-length message into a
fixed-length output. This is achieved by breaking the input up into blocks.

The last block processed should also be unambiguously length padded.
This construction is called the Merkle-Damg̊ard construction.

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 38 / 44

Practical Hash Functions and their Known Strength

Ahto Buldas, Aleksandr Lenin Signatures and Hash Functions Nov 18, 2019 39 / 44

