
http://courses.cs.ttu.ee/pages/ITI0011

Programmeerimise
põhikursus Javas

Loeng 13

25.11.2014 ITI0011 - Loeng 13 1

Outline

• Homework stuff

• Test next week

• Exam times (doodle)

• codingbat?

• IV homework - Gomoku

• Recursion

• Minimax, alpha-beta
25.11.2014 ITI0011 - Loeng 13 2

Homework submission

• https://courses.cs.ttu.ee/pages/ITI0011:git

• Homeworks into HW1, HW2, HW3 and HW4 folders

• Check your score table to see git status

• Homework 4 to be pushed into git latest December 14th 23:59
• into folder "HW4"

• The last option to defend HW4 is in December

• Course code example in git:
http://firstname.lastname@git.ttu.ee/kursused/iti0011/materjalid.git

• Use UNI-ID to access materials (not visible in browser)

25.11.2014 ITI0011 - Loeng 13 3

https://courses.cs.ttu.ee/pages/ITI0011:git
http://firstname.lastname@git.ttu.ee/kursused/iti0011/materjalid.git

Test, Exam

• Exam times (to be fixed):
• 16.01.2015 (Friday) 10:00 and 13:00 U06A-229
• ??.01.2015 (?) 10:00 and 13:00

• Exam is written on paper, 2h time

• Test
• during the lecture on 02.12.2014
• very short version of exam (3 "questions")

• reading code
• questions with options
• writing code

• gives you some feedback about your skills and preparation
• on paper
• about 45 min

25.11.2014 ITI0011 - Loeng 13 4

Recursion

• Recursion calls itself

• Must have a stopping case

• Problem can be divided into sub problems

• All recursive algorithms/methods can be written without recursion

• Classic example: factorial

𝑛! =
1, if 𝑛 = 0

𝑛 − 1 ! × 𝑛, if 𝑛 > 0

25.11.2014 ITI0011 - Loeng 13 5

Recursion

• Factorial example

4! = 3! x 4

= (2! x 3) x 4

= ((1! x 2) x 3) x 4

= (((0! x 1) x 2) x 3) x 4

= (((1 x 1) x 2) x 3) x 4

= 24

25.11.2014 ITI0011 - Loeng 13 6

Recursion vs. iterative
• Fibonacci numbers are defined:

• 𝐹0 = 0

• 𝐹1 = 1
• 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for n > 1

• Example numbers:
• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

• Recursive algorithm:

public static int fiboRec(int num) {

if (num < 2) {

return num;

}

return fiboRec(num - 1) + fiboRec(num - 2);

}

25.11.2014 ITI0011 - Loeng 13 7

Recursion vs. iterative
• To get 10th Fibonacci number, we have to call fiboRec 177 times!

• Linear approach:

public static int fiboIt(int num) {

int fib = 0; // the number we are looking for

int prev = 1; // previous fibo number

for (int i = 1; i <= num; i++) {

fib = fib + prev;

prev = fib - prev;

}

return fib;

}

• Only 10 times of for-loop execution

• See also fiboLinRec method for linear recursion.

25.11.2014 ITI0011 - Loeng 13 8

Linear recursion, tail recursion

• Linear recursion - a single recursive call is made

• Tail recursion - linear recursion where recursive call is the last step

• Fibonacci with tail recursion:

public static int fiboTailRec(int depth, int val, int prev) {

if (depth == 0) return prev;

return fiboTailRec(depth - 1, val + prev, val);

}

25.11.2014 ITI0011 - Loeng 13 9

Breadth-first search

• Advantage: find the goal closest to the initial state

• Problems: Exponential space requirements

25.11.2014 ITI0011 - Loeng 13 10

Breadth-first

• Advantage: find the goal closest to the initial state
• Find the route from A to B with the fewest stops

• Problems: Exponential space requirements

25.11.2014 ITI0011 - Loeng 13 11

Depth-first search

25.11.2014 ITI0011 - Loeng 13 12

Depth-first search

• Advantages: limited space requirements

• Problems:
• does not always find the goal

• does not always find the goal closest to the initial state

• may take very long time before finding a goal that may be close to the initial state

25.11.2014 ITI0011 - Loeng 13 13

Limited-depth depth-first search

• Like ordinary DFS, but the search is limited to a predefined depth

• the depth of each state is recorded as it is generated. When picking the
next state to expand to, only those with depth less or equal to the
predefined depth are expanded.

• Problem: if we pick a too small depth limit, we may fail to find the
answer

• what is a good depth limit?

25.11.2014 ITI0011 - Loeng 13 14

Iteratively deepening depth-first search

• Limited depth DFS where depth limit is increased with each iteration
• Generate solutions with depth limit 1

• Generate solutions with depth limit 2 etc.

• Once all the nodes of a given depth are explored, the current depth limit is
incremented.

25.11.2014 ITI0011 - Loeng 13 15

Iterative deepening search

25.11.2014 ITI0011 - Loeng 13 16

Limit = 0 Limit = 1

Limit = 2

Iterative deepening search

• Not so bad as it looks!

• Why bad: the root subtree is computed every time instead of storing it

• Most of the solutions are in the bottom leaves anyhow:

b + b2 + b3 + ... + bd = O(bd)

• Repeating the search takes:

(d + 1)b + (d)b2 + (d - 1)b3 + ... + (1)bd = O(bd)

• For b = 10 and d = 5 the number of nodes searched is 111,111 regular vs.
123,456 repeated (only 11% more!)

25.11.2014 ITI0011 - Loeng 13 17

Tree of moves in Tic-Tac-Toe

25.11.2014 ITI0011 - Loeng 13 18

http://www.ics.uci.edu/~eppstein/180a/970417.html

How to use the game tree?
• Prerequisite:

• Computer wants to make a move which gives the highest estimation score (the best move for computer)

• Opponent wants to make a move which gives the lowest estimation score (best move for the opponent, worst
move for the computer)

• Realization:
• From every state of the game, computer selects the move which has the highest estimation score (for

computer)

• From every state of the game, the opponent selects the move which has the lowest estimation score (for
computer)

• The idea:
• Let's calculate the game tree with depth N (example N = 3)

• On the lowest level (the deepest) we just calculate the estimation score

• On every level above the lowest, we propagate estimation scores upwards

25.11.2014 ITI0011 - Loeng 13 19

Minimax algorithm

• Demo:
http://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html

25.11.2014 ITI0011 - Loeng 13 20

http://cs-alb-pc3.massey.ac.nz/notes/59302/l05.html

http://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html

The skill of the program

• The higher the depth of the tree is, the better the playing skill is

• The tree grows very quickly!

• In chess, there are about 30 moves on a state
• The first level of the tree would have 30 nodes

• The second level would have 30*30 nodes

• ...

• The N-th level would have 30N

• On the 50th level there would be about 3050 (1073) nodes, which is about the same
as the number of particles in the Universe (1082)

25.11.2014 ITI0011 - Loeng 13 21

Performance of the game

25.11.2014 ITI0011 - Loeng 13 22

http://www.ics.uci.edu/~eppstein/180a/990114.html

Improvements

• There is no silver bullet!

• Many different improvements/tricks can be applied

• For example:
• Let's improve the evaluation calculation

• This in return makes our program slower and we can check less states

• Most of the improvements are achieved by pruning the game tree: there
is no need to search the whole tree.

25.11.2014 ITI0011 - Loeng 13 23

Depth First VS Breadth First Search

• We can look through the tree:

• level by level
(breadth first search)

• depth first search:

• Depth first search
is preferred:
• Uses less memory

• More about tree search techniques in the next lecture

25.11.2014 ITI0011 - Loeng 13 24

Minimax algorithm
int minimax(position p, int depth) {

struct move list[MAXMOVES];

int i, n, bestValue, value;

if (checkWin(p)) { // check for win-lose, game-over

if (p.color == WHITE) return -INFINITY;

else return INFINITY;

}

if (depth == 0) return evaluation(p); // search depth reached?

if (p.color == WHITE) bestValue = -INFINITY; // helpers

else bestValue = INFINITY;

n = makeMoveList(p, list); // legal moves, total n moves

if (n == 0) return handleNoMove(p); // no moves, tie?

for (i = 0; i < n; i++) { // iterate over legal moves

doMove(list[i], p); // try a move on the board

value = minimax(p, depth - 1); // evaluate the position

undoMove(list[i], p); // take the move back for next iteration

if (p.color == WHITE) bestValue = max(value, bestValue); // max own score

else bestValue = min(value, bestValue); // min opponent

}

return bestValue; // recursive return

}

25.11.2014 ITI0011 - Loeng 13 25

Advanced search algorithm: alpha-beta

25.11.2014 ITI0011 - Loeng 13 26

Alpha-beta
alpha-beta(player, node, alpha, beta)

if (game over in current board state) return winner

children = all legal moves from player from this state

if (max's turn)

for each child

score = alpha-beta(other player, child, alpha, beta)

if score > alpha then alpha = score

if alpha >= beta then return alpha (cut off)

return alpha (this is our best move)

else (min's turn)

for each child

score = alpha-beta(other player, child, alpha, beta)

if score < beta then beta = score

if alpha >= beta then return beta (cut off)

return beta (this is the opponent's best move)

25.11.2014 ITI0011 - Loeng 13 27

Negamax, alpha-beta algorithms
int negaMax(pos, depth) {

if (depth == 0) return evaluate(pos);

best = -INFINITY;

succ = successors(pos); // legal moves

while (not empty(succ)) {

pos = removeOne(succ); // try one

value = -negaMax(pos, depth - 1); //calc position

if (value > best) best = value;

}

return best;

}

int alphaBeta(pos, depth, alpha, beta) {

if (depth == 0) return evaluate(pos);

best = -INFINITY;

succ = successors(pos);

while (not empty(succ) && best < beta) {

pos = removeOne(succ);

if (best > alpha) alpha = best;

value = -alphaBeta(pos, depth - 1, -alpha, -beta);

if (value > best) best = value;

}

return best;

}

25.11.2014 ITI0011 - Loeng 13 28

Improvement: sorting legal moves

• To improve the algorithm, it's wise to sort legal moves in a game state:
start with the moves which are probably better

• This improves pruning effect

• How to sort?

• Iterative deepening:
• Start full search with depth 2

• Continue with full search with depth 4 etc.

• Every time use the result of the last search for sorting

25.11.2014 ITI0011 - Loeng 13 29

Other improvements

• Killer moves
• Let's remember very good moves for both players

• Try already stored very good moves first

• Quiescence search
• Interesting positions are searched to a greater depth than "quiet" ones

• High movement or capturing will be searched deeper

• Null-move
• What happens if the opponent skips a move?

• If the result is OK, it is a good indicator

• If the result is bad, we store the "killer move"

25.11.2014 ITI0011 - Loeng 13 30

The effect of pruning

• The deeper the game tree, the more effect pruning has.

• Game tree with depth 5:
• MiniMax: 10,541,242 evaluation nodes

• Alpha-Beta: 1,037,209 evaluation nodes

• A-B + "killer moves": 530,587 evaluation nodes

• Game tree with depth 7:
• MiniMax: 8,100,000,000 evaluation nodes

• Alpha-Beta: 162,662,568 evaluation nodes

• A-B + "killer moves": 46,455,262 evaluation nodes

25.11.2014 ITI0011 - Loeng 13 31

Additional idea: endgame databases
• Idea:

• Let's build a huge endgame database

• Every endgame state in the database has exact evaluation score (win, draw, loss)

• First endgame states with one piece, then with two pieces etc.

• This was done in 8x8 checkers:
• Chinook: Jonathan Schaeffer, Robert Blake,

Paul Lu and Martin Bryant

• University of Alberta: http://webdocs.cs.ualberta.ca/~chinook/

• Endgame database with 10 or less pieces has more than
39,000,000,000,000 different positions

• They also have solved checkers. Total number of different
positions: 500,995,484,682,338,672,639 (5 * 1020)

• Deep search usually reach to the endgame database,
where precise evaluation can be given.

• Search from both starting and ending positions

25.11.2014 ITI0011 - Loeng 13 32

http://www.science.ualberta.ca/
UndergraduateStudents/StudentNewsletters/
September2012Newsletter.aspx

http://webdocs.cs.ualberta.ca/~chinook/

Links

• Gomoku:
• http://en.wikipedia.org/wiki/Gomoku

• Minimax:
• http://en.wikipedia.org/wiki/Minimax

• Alpha-beta pruning:
• http://en.wikipedia.org/wiki/Alpha-beta_pruning

• http://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html

• http://www.youtube.com/watch?v=xBXHtz4Gbdo

25.11.2014 ITI0011 - Loeng 13 33

http://en.wikipedia.org/wiki/Gomoku
http://en.wikipedia.org/wiki/Minimax
http://en.wikipedia.org/wiki/Alpha-beta_pruning
http://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html
http://www.youtube.com/watch?v=xBXHtz4Gbdo

