- 1. Alice and Bob generate a session key using the Diffie-Hellman key establishment protocol. They agree on a finite cyclic group \mathbb{Z}_{23}^{\times} generated by 5. What is the order of \mathbb{Z}_{23}^{\times} ? Suppose that Alice's private exponent is 2, and Bob's private exponent is 3, what is the session key generated by Alice and Bob?
- 2. Consider the following key agreement protocol between Alice (A) and Bob (B). Prior to starting any communication, Alice and Bob generate their secret keys ω_A and ω_B . Alice generates the session key K. To share K with Bob, the following sequence of messages is executed.

(1) Alice \to Bob: $\omega_A \oplus K$.

(2) Bob \rightarrow Alice: $\omega_B \oplus \omega_A \oplus K$

(3) Alice \rightarrow Bob: $\omega_A \oplus \omega_B \oplus \omega_A \oplus K = \omega_B \oplus K$

After receiving the last message, Bob computes $\omega_B \oplus \omega_B \oplus K = K$. At this point Alice and Bob have the shared key K which they use to encrypt the communication. Can adversary Carol obtain the key K by eavesdropping on the communication channel?

3. Provide prime factorization of the following integers:

(a) 64

(b) 120

(c) 375

(d) 47

4. Given a list of functions in asymptotic notation, order them by growth rate (slowest to fastest).

(a) $\Theta(n \log_2 n)$ (b) $\Theta(n^2)$ (c) $\Theta(n)$ (d) $\Theta(1)$ (e) $\Theta(2^n)$

 $(f) \quad \Theta(n^3)$

 $(g) \quad \Theta(n!) \quad (h) \quad \Theta(\log_2 n) \quad (i) \quad \Theta(n^2 \log_2 n) \quad (j) \quad \Theta(2^n \log^2 n)$

5. Check if the following conditions are true

(a) $\Theta(n+30) = \Theta(3n-1)$,

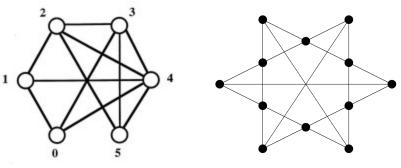
(b) $\Theta(n^2 + 2n - 10) = \Theta(n^2 + 3n)$,

(c) $\Theta(n^3 \cdot 3n) = \Theta(n^2 + 3n)$.

6. Write each of the following functions in O notation.

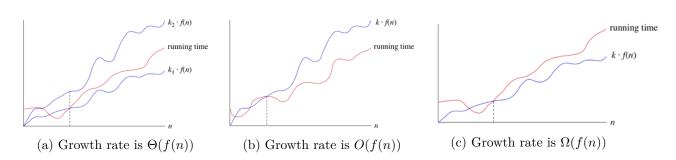
1

(a) $5 + 0.001n^3 + 0.025n$ (b) $500n + 100n^{1.5}$ (c) $0.3n + 5n^{1.5} + 2.5n^{1.75}$



- (a) Maximal clique problem
- (b) graph 3-coloring program
- 7. Find the maximal clique in the graph shown in Fig. 1a. A subgraph H of a graph G is a maximal clique in G if there is an edge between every pair of vertices in H, and there is no vertex in $G \setminus H$ connected to every vertex in H.
- 8. Provide a 3-coloring of the graph shown in Fig. 1b so that any two adjacent vertices do not share the same color.

Asymptotic Bounds of Functions



Θ notation

The assertion $f(n) = \Theta(g(n))$ means that f(n) is asymptotically bounded from above and from below by g(n). See Fig. 2a Formally written

$$f(n) = \Theta(g(n)) \iff \exists k_1, k_2 > 0, \exists n_0 \forall n > n_0 : k_1 \cdot g(n) \leqslant f(n) \leqslant k_2 \cdot g(n)$$
.

Big O notation

The assertion f(n) = O(g(n)) means that f(n) asymptotically grows at most as fast as g(n). It provides an asymptotic upper bound, without specifying a lower bound. See Fig. 2b. Formally written

$$f(n) = O(g(n)) \iff \exists k > 0 \exists n_0 \forall n > n_0 : |f(n)| \leqslant k \cdot g(n)$$
.

Ω notation

The assertion $f(n) = \Omega(g(n))$ means that f(n) asymptotically grows at least as fast as g(n). It provides an asymptotic lower bound without specifying an upper bound. See Fig. 2c. Formally written

$$f(x) = \Omega(g(x)) \iff \exists k > 0 \exists n_0 \forall n > n_0 f(n) : \geqslant k \cdot g(n)$$
.

Little o notation

The assertion f(x) = o(g(x)) means that g(x) asymptotically grows much faster than f(x).

$$f(x) = o(g(x)) \iff \forall k > 0 \exists n_o \forall n > n_0 : |f(n)| < k \cdot g(n)$$
.

In example, $2x = o(x^2)$, and $\frac{1}{x} = o(1)$. It can be seen that $2x^2 = O(x^2)$, but $2x^2 \neq o(x^2)$.

Little ω notation

The assertion $f(n) = \omega(g(n))$ means that f(n) asymptotically grows much faster than g(n).

$$f(x) = \omega(g(x)) \iff \forall k > 0 \exists n_0 \forall n > n_0 : |f(n)| > k \cdot g(n)$$
.