- 1. Show that the set of all finite bitstrings $\{0,1\}^*$ is countable.
- 2. Describe a Turing machine that computes function y = 2x + 1.
- 3. Show that $3n^2 + 6n + 7 = O(n^2)$.
- 4. Show that $2n^3 + 6n^2 + 6n + 1 = O(n^3)$.
- 5. Show that $n^3 \neq O(n^2)$.
- 6. Show that $n! \neq O(2^n)$.
- 7. Find functions f(n) and g(n) such that $f(n) = O(g(n)), g(n) \neq O(f(n)), \text{ and } f(n) \neq o(g(n)).$
- 8. Given a list of functions in asymptotic notation, order them by growth rate (slowest to fastest).
- 9. Show that
- 10. Check if the following conditions are true
 - (a) $\Theta(n+30) = \Theta(3n-1)$,
 - (b) $\Theta(n^2 + 2n 10) = \Theta(n^2 + 3n)$,
 - (c) $\Theta(n^3 \cdot 3n) = \Theta(n^2 + 3n)$.
- 11. Write each of the following functions in O notation.
 - (a) $5 + 0.001n^3 + 0.025n$ (b) $500n + 100n^{1.5}$ (c) $0.3n + 5n^{1.5} + 2.5n^{1.75}$
- 12. Show that