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The simplest algebraic structures are sets associated with
single operations that satisfy certain reasonable axioms.

Such a set with a single operation is called a group.

Some examples of groups:
• Integers Zn with operation of addition or

multiplication – modular groups
• 2 × 2 matrices with operation of matrix multiplication

– matrix groups
• symmetries of a body with operation of composition –

symmetic groups
• rigid motions of a body with operation of composition

– dihedral groups
• permutations on a set with operation of composition –

permutation groups



A group (G, ◦) is a set G together with a law of
composition, which is a function G × G → G defined by
(a, b) 7→ a ◦ b that satisfies the following axioms:

1. The group operation is associative

∀a, b, c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c .

2. There exists an identity element e ∈ G such that

∀a ∈ G : e ◦ a = a ◦ e = a .

3. For every element a ∈ G there exists an inverse
element a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = e .



Groups with the property that for all a, b ∈ G

a ◦ b = b ◦ a ,

is called abelian or commutative.

Groups that do not have this property are called
nonabelian or noncommutative.

I.e., matrix groups are nonabelian, since the group
operation, the matrix multiplication, is not commutative –
A × B ̸= B × A.



A group is finite or has finite order if it contains a finite
number of elements. Otherwise, the group is infinite or
has infinite order.

The order of a finite group G (denoted as |G| or ord G) is
the number of elements in contains. If group G contains n
elements, then |G| = n.



Example 1
The set of integers Z is a group under the operation of
addition.

Addition operation is associative

∀a, b, c ∈ Z : a + (b + c) = (a + b) + c .

The additive identity is 0, since for any integer a, it holds
that a + 0 = 0 + a = a. For every integer a there is an
inverse element −a such that a + (−a) = −a + a = 0.

Since addition is commutative, meaning that for all a, b ∈ Z
it holds that a + b = b + a, then (Z,+) is an Abelian group.



The set Zn is a group under modular addition.

Figure: Cayley table for (Z5,+)

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3



The set Z6 together with operation of multiplication does
not form a group, for the following reasons:

• Element 0 is not invertible, i.e. the equation 0 · k = 1
(mod 6) is not solvable

• Elements 2, 4 are not invertible, since the equations
2 · k = 1 (mod 6) and 4 · k = 1 (mod 6) are not
solvable.

Previously in this course we proved a theorem that says
”An element a ∈ Zn is invertible iff gcd(a, n) = 1”.

The set of invertible elements of Zn is a group under the
operation of multiplication. Such a group is called group
of units and denoted as U(n).



The set of invertible elements in Z8 is a group U(8) under
modular multiplication.

Figure: Cayley table for U(8)

× 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1



Theorem 1
The identity element in a group G is unique.

Proof.
Suppose e and e′ are both identity elements in G. Then

e = e ◦ e′ = e′ .

Therefore, there exists only one element e ∈ G such that
e ◦ g = g ◦ e = g for all g ∈ G.



Theorem 2
If g is any element in group G, then the inverse of g is
unique.

Proof.
Let g′ and g′′ both be the inverse elements of g. Then

g ◦ g′ = g ◦ g′′ = e .

Multiplying both sides by g−1 we have

g−1 ◦ g ◦ g′ = g−1 ◦ g ◦ g′′ = g−1 ◦ e =⇒ g′ = g′′ = g−1 .



Theorem 3
Let G be a group. If a, b ∈ G, then (ab)−1 = b−1a−1.
Proof.
Let a, b ∈ G. Then

ab(ab)−1 = abb−1a−1 = aa−1 = e ,

(ab)−1ab = b−1a−1ab = b−1b = e .

Theorem 4
Let G be a group. For any a ∈ G, (a−1)−1 = a.
Proof.
Observe that a−1(a−1)−1 = e. Multiplying both sides by a
we have

(a−1)−1 = e(a−1)−1 = aa−1(a−1)−1 = ae = a .



Proposition 1 (Left and right cancellation laws)
Let G be a group, let a, b, c ∈ G. Then ba = ca =⇒ b = c
and ab = ac =⇒ b = c.

Proof.

ba = ca =⇒ baa−1 = caa−1 =⇒ b = c ,

ab = ac =⇒ a−1ab = a−1ac =⇒ b = c .

In a group, the usual laws of exponents hold. For all
g, h ∈ G,

1. gmgn = gm+n for all m, n ∈ Z
2. (gm)n = gmn for all m, n ∈ Z
3. If G is abelian, then (gh)n = gnhn



Let (G, ◦) be a group. When the group operation ◦ is
restricted to a subset H ⊆ G, and H forms a group under ◦,
then (H, ◦) is a subgroup of (G, ◦).

I.e., consider the set 2Z = {. . . ,−4,−2, 0, 2, 4 . . .}. (2Z,+)
is a subgroup of (Z,+).

Note that
• H = {e} is a subgroup of every group G. It is called a

trivial subgroup.
• If G is a group, then it is the subgroup of itself. Such a

subgroup is called improper subgroup.
• If H ⊂ G (H is a proper subset of G) and forms a

group under the group operation of G, then H is a
proper subgroup of G.



Group (Z4,+) has one single nontrivial proper subgroup
H = {0, 2}.

Figure: Cayley table for (Z2 × Z2,+)

+ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

Group (Z2 × Z2,+) has three nontrivial proper subgroups:

H1 = {(0, 0), (0, 1)}
H2 = {(0, 0), (1, 0)}
H3 = {(0, 0), (1, 1)}



Theorem 5
Let G be a group and let a ∈ G. Then the set

⟨a⟩ = {ak : k ∈ Z}

is a subgroup of G. Furthermore, ⟨a⟩ is the smallest
subgroup of G that contains a.

Proof.
The identity a0 = e ∈ ⟨a⟩. Let g, h ∈ ⟨a⟩. Then g = am and
h = an with m, n ∈ Z. So gh = aman = am+n ∈ ⟨a⟩. If
g = an ∈ ⟨a⟩, its inverse g−1 = a−n ∈ ⟨a⟩. Hence, ⟨a⟩ is a
subgroup of G. If any subgroup H of G contains a, it
contains all powers of a by closure. Hence, it contains ⟨a⟩.
Therefore, ⟨a⟩ is the smallest subgroup of G containing
a.



For a ∈ G, ⟨a⟩ is called the cyclic subgroup generated by
a.

If G contains some element a such that ⟨a⟩ = G, then G is
a cyclic group and a is the generator of G.

If a ∈ G, the order of a (denoted as |a| or ord a) is the
smallest positive integer n such that an = e. If there is no
such integer n, then |a| = ∞.



A cyclic group may have more than a single generator. I.e.,
Z6 is generated by 1 and 5. Hence, Z6 is a cyclic group.

Not every element in a cyclic group is a generator of the
group. I.e., the order of 2 ∈ Z6 is 3. The cyclic subgroup
generated by 2 is ⟨2⟩ = {0, 2, 4}.

Groups Z and Zn are cyclic groups. Z is generated by 1
and −1. We can certainly generate any Zn with 1, but
there are may be other generators of Zn.

Group U(9) = {1, 2, 4, 5, 7, 8} is a cyclic group. 2 is a
generator for U(9), since ⟨2⟩ = {2, 4, 8, 7, 5, 1} = U(9).

The order of U(n) is φ(n), where φ(n) is the Euler’s phi
(totient) function.



Theorem 6
Every cyclic group is abelian.

Proof.
Let G be a cyclic group, let a ∈ G be a generator for G. If
g, h ∈ G, then g = ar and h = as for some nonnegative
integers r, s. Since

gh = aras = ar+s = as+r = asar = hg ,

G is abelian.



Theorem 7
Every subgroup of a cyclic group is cyclic.

Proof.
Let G = ⟨a⟩, let H be a subgroup of G. If H = {e}, then
trivially, H is cyclic. Suppose g ∈ H, g ̸= e. Then g = an for
some nonnegative integer n. Let m be the smallest natural
number such that am ∈ H. Such an m exists by the
Principle of Well Ordering. We need to show that am is the
generator of H. That is, every h ∈ H can be written as a
power of am.

Proof continues on the next slide…



Theorem 7
Every subgroup of a cyclic group is cyclic.

Proof.
Since h ∈ H and H is a subgroup of G, then h = ak for some
positive integer k. By the division algorithm, k = mq + r,
where 0 ⩽ r < m. Then

ak = amq+r = (am)q + ar ,

so ar = ak(am)−q. Since ak ∈ H and (am)−q ∈ H, by closure
ar ∈ H. However, m was the smallest positive integer such
that am ∈ H. A contradiction. Consequently, r = 0 and so
k = mq. Therefore, h = ak = amq = (am)q, which means that
H is generated by am, and therefore, H is cyclic.



The subgroups of Z are exactly nZ for n = 0, 1, 2, . . ..
Theorem 8
Let G be a cyclic group of order n. Let a be a generator for
G. Then ak = e iff n|k.

Proof.
Suppose ak = e. By the division algorithm, k = nq + r with
0 ⩽ r < n. Hence

e = ak = anq+r = (an)qar = eqar = ar .

Since the smallest positive integer m such that am = e is n,
then r = 0. Therefore, ak = anq and hence n|k. Conversely,
if n|k, then k = ns for some integer s. Consequently,

ak = ans = (an)s = es = e .



Theorem 9
Let G be a cyclic group of order n, and suppose a ∈ G is a
generator of G. If b = ak, then the order of b is n/d, where
d = gcd(k, n).

Proof.
We wish to find the smallest integer m such that
e = bm = akm. By Theorem 8, this is the smallest integer m
such that n|km. Since d = gcd(k, n), then (n/d)|m(k/d) and
gcd(k/d, n/d) = 1. Hence, (n/d)|m(k/d) iff (n/d)|m. The
smallest such m is n/d.



From Theorem 9 it follows that
Corollary 1
The generators of Zn are the integers r such that 1 ⩽ r < n
and gcd(r, n) = 1.

Example 2
Consider Z16. Elements 1, 3, 5, 7, 9, 11, 13, 15 are coprime to
16, and hence each of them generates Z16. I.e., take 9:

Z16 = ⟨9⟩ = {9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7, 0} .



Theorem 10
Let U(n) be a group of units in Zn. Then |U(n)| = φ(n).

Proof.
The group of units consists of invertible elements a ∈ Zn
such that gcd(a, n) = 1. There are φ(n) of them.

Theorem 11 (Euler theorem)
Let a, n be integers such that n > 0 and gcd(a, n) = 1. Then
aφ(n) ≡ 1 (mod n).

Proof.
By Theorem 10, |U(n)| = φ(n). Therefore, for all a ∈ U(n)
it holds that aφ(n) = 1. Therefore, aφ(n) ≡ 1 (mod n).



A special case of Euler theorem in which n is a prime
number. If n is prime, then φ(n) = n − 1. This result is
known as Fermat little theorem.
Theorem 12 (Fermat little theorem)
Let p be any prime number, and suppose that gcd(p, a) = 1,
then ap−1 ≡ 1 (mod p).



Definition 1 (Coset)
Let G be a group and H be a subgroup of G. The left
coset of H with representative g ∈ G is the set

gH = {gh : h ∈ H} .

Right cosets can be defined similarly by

Hg = {hg : h ∈ H} .

Example 3
Consider a subgroup H = {0, 3} of Z6. The cosets are:

0 + H = 3 + H = {0, 3}
1 + H = 4 + H = {1, 4}
2 + H = 5 + H = {2, 5}



Lemma 1
Let H be a subgroup of a group G. Let g1, g2 ∈ G. If
g2 ∈ g1H, then g1H = g2H.

Proof.
Let a ∈ g1H.

g2 ∈ g1H =⇒ g2 = g1h =⇒ g1 = g2h−1

a = g1h′ = g2h−1h′ =⇒ a ∈ g2H =⇒ g1H ⊆ g2H

Let a ∈ g2H.

g2 ∈ g1H =⇒ g2 = g1h
a = g2h′ = g1hh′ =⇒ a ∈ g1H =⇒ g2H ⊆ g1H

Therefore, g1H = g2H.



Theorem 13
Let H be a subgroup of G. Then the left cosets of H in G
partition G. That is, the group G is the disjoint union of
the left cosets of H in G.

Proof.
Let g1H and g2H be two cosets of H in G. We must show
that either g1H ∩ g2H = ∅ or g1H = g2H. Suppose
g1H ∩ g2H ̸= ∅ and let a ∈ g1H ∩ g2H. Then a = g1h1 = g2h2
for some elements h1, h2 ∈ H. Hence, g1 = g2h2h−1

1 or
g1 ∈ g2H. By Lemma 1, g1H = g2H.

NOTE: There is nothing special in this theorem about left
cosets. Right cosets also partition G in exactly the same
way, and the proof is very similar to the one above.



Definition 2 (Index of a subgroup)
The index of a subgroup H in a group G is the number of
left cosets of H in G, and is denoted as [G : H].

Example 4
Let G = Z6 and H = {0, 3}. Then [G : H] = 3.



Theorem 14
Let H be a subgroup of a group G. The number of left cosets
of H in G is the same as the number of right cosets of H in
G.

Proof.
Let LH and RH denote the set of left and right cosets of H
in G. Define ϕ : LH → RH by gH 7→ Hg−1. We will show
that ϕ : LH → RH is a bijection. Define the inverse map
ψ : RH → LH by Hh 7→ h−1H. Let Hh ∈ RH, then
(ϕ ◦ ψ)(Hh) = Hh.

(ϕ ◦ ψ)(Hh) = ϕ(h−1H) = H(h−1)−1 = Hh .

Proof continues on the next slide…



Theorem 14
Let H be a subgroup of a group G. The number of left cosets
of H in G is the same as the number of right cosets of H in
G.

Proof.
Let gH ∈ LH, then (ψ ◦ ϕ)(gH) = gH.

(ψ ◦ ϕ)(gH) = ψ(Hg−1) = (g−1)−1H = gH .

Therefore, ϕ : LH → RH is a bijection between the sets of
left and right cosets of H, and hence the number of left
cosets of H in G is the same as the number of right cosets
of H in G.



Proposition 2
Let H be a subgroup of G with g ∈ G and define a map
ϕ : H → gH by ϕ(h) = gh. The map ϕ is bijective, hence the
number of elements in H is the same as the number of
elements in gH.
Proof.
Let ϕ : H → gH be defined by h 7→ gh. Define an inverse
mapping ψ : gH → H by a 7→ g−1a. First we show that ψ is
well defined. Since a ∈ gH, then a = gh for some h ∈ H.
g−1a = g−1gh = h ∈ H. We show that ϕ is a bijection.

(ϕ ◦ ψ)(a) = ϕ(g−1a) = gg−1a = a ,

(ψ ◦ ϕ)(h) = ψ(gH) = g−1gh = h .

Therefore, ϕ is a bijection between H and gH. Hence, the
number of elements in H is the same as the number of
elements in gH.



Theorem 15 (Lagrange)
Let G be a finite group and let H be a subgroup of G. Then
|G|/|H| = [G : H] is the number of distinct left cosets of H
in G. In particular, the number of elements in H must
divide the number of elements in G.

Proof.
Every subset H ⊆ G partitions G into [G : H] distinct left
cosets. Each left coset has |H| elements, therefore,
|G| = [G : H]|H|.



From the Lagrange theorem it follows that
Corollary 2
Suppose that G is a finite group and g ∈ G. Then the order
of g must divide the order of G.

Corollary 3
Let |G| = p with p a prime number. Then G is cyclic and
any g ∈ G such that g ̸= e is a generator.

Proof.
Let g ∈ G such that g ̸= e. Then the order of g must divide
p. Since p is prime, |g| = 1 or |g| = p. If |g| = 1, then g = e,
since ⟨g⟩ = {e}. If |⟨g⟩| > 1, it must be p. Hence, g
generates G.




