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A binary relation R between sets A and B is the subset

R ⊆ A × B : ∀x ∈ A,∀y ∈ B : xRy ⇐⇒ (x, y) ∈ R .

A binary relation is a mapping (or a function) f : A → B
if it is functional (right-unique) and left-total.

In other words, R ⊆ A × B maps every element a ∈ A to a
unique element b ∈ B.



An injection is an injective mapping – a binary relation
that is left-unique, right-unique, and left-total

A surjection (or onto mapping) is a surjective mapping
– a binary relation that is right-unique, left-total, and
right-total.

A mapping is a bijection (or one-to-one
correspondence) is a mapping which is injective and
surjective. In other words, left-unique, right-unique,
left-total, and right-total.



A linear mapping or linear transformation is a map
Rn → Rm given by a matrix.

For example, given a 2 × 2 matrix

A =

(
a b
c d

)
,

we can define a map TA : R2 → R2 defined by

∀(x, y) ∈ R2 : TA(x, y) = (ax + by, cx + dy) .

This is actually matrix multiplication, that is(
a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)
.



For any set S, a bijective mapping π : S → S is called a
permutation.

Suppose S = {1, 2, 3}. Define a map π : S → S by(
1 2 3

π(1) π(2) π(3)

)
=

(
1 2 3
2 1 3

)
.

It is easy to verify that this map is bijective, hence this
map is a permutation of S.



Let S be a set. The identity map idS is such that

∀s ∈ S : s 7→ s .

In example, for S = {1, 2, 3}, the identity map idS is(
1 2 3

π(1) π(2) π(3)

)
=

(
1 2 3
1 2 3

)
.



A composition of mappings f : A → B and g : B → C is
a new mapping h : A → C defined by

(g ◦ f)(x) = g(f(x)) .

Note that g(f(x)) = (g ◦ f)(x) ̸= (f ◦ g(x)) = f(g(x)).



Consider the following sets

A = {1, 2, 3} B = {a, b, c} C = {x, y, z} .

Consider mappings

f : A → B defined by {1 7→ b, 2 7→ c, 3 7→ a} ,

g : B → C defined by {a 7→ z, b 7→ z, c 7→ x} .

The composition g ◦ f : A → C is defined by
{1 7→ z, 2 7→ x, 3 7→ z}.

What can you say about the composition f ◦ g?



Theorem 1
The composition of mappings in associative. That is, for
f : A → B, g : B → C, and h : C → D:

(h ◦ g) ◦ f = h ◦ (g ◦ f) .

Proof.
Let a ∈ A. Then

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = h(g(f(a)))
= (h ◦ g)(f(a)) = ((h ◦ g) ◦ f)(a) .



Let f : A → B be a mapping. The inverse mapping
f−1 : B → A is a mapping such that

f ◦ f−1 = idA ,

f−1 ◦ f = idB .

A mapping f : A → B is invertible (has a corresponding
inverse mapping) iff f is bijective.

The mapping f : R → R defined by f(x) = ln(x) has an
inverse f−1(x) = ex.

(f ◦ f−1)(x) = f(f−1(x)) = f(ex) = ln ex = x ,

(f−1 ◦ f)(x) = f−1(ln x) = eln x = x .



To show that a mapping is invertible iff it is bijective, we
need the following lemmas.
Lemma 1
An invertible mapping is injective.

Proof.
Suppose that f : A → B is invertible with inverse
f−1 : B → A. Then

∀a, b ∈ A : f(a) = f(b) =⇒ f−1(f(a)) = f−1(f(b))
=⇒ (f−1 ◦ f)(a) = (f−1 ◦ f)(b)
=⇒ idA(a) = idA(b)
=⇒ a = b .

Consequently, f is injective.



Lemma 2
An invertible mapping is surjective.

Proof.
Suppose that f : A → B is invertible with inverse
f−1 : B → A. Suppose that b ∈ B. To show that f is
surjective, for every b ∈ B we need to find a ∈ A such that
f(a) = b. Indeed, such an a exists:

∀b ∈ B : ∃a = f−1(b) ∈ A : f(f−1(b)) = (f ◦ f−1)(b) = b .

Consequently, f is surjective.



Theorem 2
A mapping f : A → B is invertible iff it is bijective.

Proof.
By Lemmas 1 and 2, an invertible mapping is bijective.

To complete the proof, we will show that any bijective
mapping is invertible.

Assume that f : A → B is bijective, and let b ∈ B. Since f is
surjective, there exists a ∈ A such that f(a) = b. Because f
is injective, such a must be unique. Define f−1 : B → A by
letting f−1(b) = a.
We have now constructed the inverse of f, hence f is
invertible.



Theorem 3
If f : A → B and g : B → C are both injective, then the
mapping g ◦ f is injective.

Proof.
Indeed, since both f and g are injective, then for all a, b ∈ A
it holds that

(g ◦ f)(a) = (g ◦ f)(b) =⇒ g(f(a)) = g(f(b))
=⇒ f(a) = f(b) =⇒ a = b .

Therefore, g ◦ f is an injective mapping.



Theorem 4
If f : A → B and g : B → C are both surjective, then the
mapping g ◦ f is surjective.

Proof.
We need to show that the mapping g ◦ f : A → C is
surjective, or, in other words, we need to show that for
every c ∈ C there exists a ∈ A such that (g ◦ f)(a) = c.
Since g is surjective, there exists b ∈ f(A) such that
g(b) = c. In turn, surjectivity of f implies that there exists
a ∈ A such that f(a) = b.
Hence, for every c ∈ C there exists a ∈ A such that
(g ◦ f)(a) = c.



Corollary 1
If f : A → B and g : B → C are bijective, so is their
composition g ◦ f.

Proof.
This is a direct consequence of Theorems 3 and 4.

Corollary 2
The composition of permutations is a permutation.

Proof.
This is a direct consequence of Theorems 3 and 4.




