ITC8190 Mathematics for Computer Science Mappings and their properties

Aleksandr Lenin

September 25th, 2018

A binary relation R between sets A and B is the subset

$$R \subseteq A \times B : \forall x \in A, \forall y \in B : xRy \Longleftrightarrow (x, y) \in R .$$

A binary relation is a **mapping** (or a **function**) $f: A \to B$ if it is functional (right-unique) and left-total.

In other words, $R \subseteq A \times B$ maps every element $a \in A$ to a *unique* element $b \in B$.

An **injection** is an injective mapping – a binary relation that is left-unique, right-unique, and left-total

A surjection (or onto mapping) is a surjective mapping – a binary relation that is right-unique, left-total, and right-total.

A mapping is a **bijection** (or **one-to-one correspondence**) is a mapping which is injective and surjective. In other words, left-unique, right-unique, left-total, and right-total.

A linear mapping or linear transformation is a map $\mathbb{R}^n \to \mathbb{R}^m$ given by a matrix.

For example, given a 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad ,$$

we can define a map $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\forall (x, y) \in \mathbb{R}^2 : T_A(x, y) = (ax + by, cx + dy) .$$

This is actually matrix multiplication, that is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

For any set S, a bijective mapping $\pi : S \to S$ is called a **permutation**.

Suppose $S = \{1, 2, 3\}$. Define a map $\pi : S \to S$ by

$$\begin{pmatrix} 1 & 2 & 3\\ \pi(1) & \pi(2) & \pi(3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3\\ 2 & 1 & 3 \end{pmatrix}$$

.

It is easy to verify that this map is bijective, hence this map is a permutation of S.

Let S be a set. The **identity map** id_S is such that

$$\forall s \in S : s \mapsto s \; .$$

In example, for $S = \{1, 2, 3\}$, the identity map id_S is

$$\begin{pmatrix} 1 & 2 & 3\\ \pi(1) & \pi(2) & \pi(3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3\\ 1 & 2 & 3 \end{pmatrix}$$

٠

A composition of mappings $f: A \to B$ and $g: B \to C$ is a new mapping $h: A \to C$ defined by

$$(g \circ f)(x) = g(f(x))$$

Note that $g(f(x)) = (g \circ f)(x) \neq (f \circ g(x)) = f(g(x)).$

Consider the following sets

$$A = \{1, 2, 3\} \qquad B = \{a, b, c\} \qquad C = \{x, y, z\} .$$

Consider mappings

$$f: A \to B \text{ defined by } \{1 \mapsto b, 2 \mapsto c, 3 \mapsto a\} ,$$

$$g: B \to C \text{ defined by } \{a \mapsto z, b \mapsto z, c \mapsto x\} .$$

The composition $g \circ f \colon A \to C$ is defined by $\{1 \mapsto z, 2 \mapsto x, 3 \mapsto z\}.$

What can you say about the composition $f \circ g$?

Theorem 1 The composition of mappings in associative. That is, for $f: A \to B, g: B \to C$, and $h: C \to D$:

$$(h \circ g) \circ f = h \circ (g \circ f)$$
.

Proof. Let $a \in A$. Then

$$(h \circ (g \circ f))(a) = h((g \circ f)(a)) = h(g(f(a))) = (h \circ g)(f(a)) = ((h \circ g) \circ f)(a) .$$

Let $f: A \to B$ be a mapping. The **inverse mapping** $f^{-1}: B \to A$ is a mapping such that

$$f \circ f^{-1} = id_A ,$$

$$f^{-1} \circ f = id_B .$$

A mapping $f: A \to B$ is **invertible** (has a corresponding inverse mapping) iff f is bijective.

The mapping $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \ln(x)$ has an inverse $f^{-1}(x) = e^x$.

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(e^x) = \ln e^x = x ,$$

$$(f^{-1} \circ f)(x) = f^{-1}(\ln x) = e^{\ln x} = x .$$

To show that a mapping is invertible iff it is bijective, we need the following lemmas.

Lemma 1

An invertible mapping is injective.

Proof.

Suppose that $f: A \to B$ is invertible with inverse $f^{-1}: B \to A$. Then

$$\forall a, b \in A : f(a) = f(b) \implies f^{-1}(f(a)) = f^{-1}(f(b))$$
$$\implies (f^{-1} \circ f)(a) = (f^{-1} \circ f)(b)$$
$$\implies id_A(a) = id_A(b)$$
$$\implies a = b .$$

Consequently, f is injective.

Lemma 2

An invertible mapping is surjective.

Proof.

Suppose that $f: A \to B$ is invertible with inverse $f^{-1}: B \to A$. Suppose that $b \in B$. To show that f is surjective, for every $b \in B$ we need to find $a \in A$ such that f(a) = b. Indeed, such an a exists:

$$\forall b \in B: \exists a = f^{-1}(b) \in A: f(f^{-1}(b)) = (f \circ f^{-1})(b) = b$$

Consequently, f is surjective.

Theorem 2

A mapping $f: A \to B$ is invertible iff it is bijective.

Proof.

By Lemmas 1 and 2, an invertible mapping is bijective.

To complete the proof, we will show that any bijective mapping is invertible.

Assume that $f: A \to B$ is bijective, and let $b \in B$. Since f is surjective, there exists $a \in A$ such that f(a) = b. Because f is injective, such a must be unique. Define $f^{-1}: B \to A$ by letting $f^{-1}(b) = a$.

We have now constructed the inverse of f, hence f is invertible.

Theorem 3 If $f: A \to B$ and $g: B \to C$ are both injective, then the mapping $g \circ f$ is injective.

Proof.

Indeed, since both f and g are injective, then for all $a, b \in A$ it holds that

$$(g \circ f)(a) = (g \circ f)(b) \implies g(f(a)) = g(f(b))$$

 $\implies f(a) = f(b) \implies a = b$.

Therefore, $g \circ f$ is an injective mapping.

Theorem 4

If $f: A \to B$ and $g: B \to C$ are both surjective, then the mapping $g \circ f$ is surjective.

Proof.

We need to show that the mapping $g \circ f \colon A \to C$ is surjective, or, in other words, we need to show that for every $c \in C$ there exists $a \in A$ such that $(g \circ f)(a) = c$.

Since g is surjective, there exists $b \in f(A)$ such that g(b) = c. In turn, surjectivity of f implies that there exists $a \in A$ such that f(a) = b.

Hence, for every $c \in C$ there exists $a \in A$ such that $(g \circ f)(a) = c$.

Corollary 1 If $f: A \to B$ and $g: B \to C$ are bijective, so is their composition $g \circ f$.

Proof.

This is a direct consequence of Theorems 3 and 4.

Corollary 2

The composition of permutations is a permutation.

Proof.

This is a direct consequence of Theorems 3 and 4.

