ITC8190
 Mathematics for Computer Science
 Mappings and their properties

Aleksandr Lenin

September 25th, 2018

A binary relation R between sets A and B is the subset

$$
R \subseteq A \times B: \forall x \in A, \forall y \in B: x R y \Longleftrightarrow(x, y) \in R
$$

A binary relation is a mapping (or a function) $f: A \rightarrow B$ if it is functional (right-unique) and left-total.

In other words, $R \subseteq A \times B$ maps every element $a \in A$ to a unique element $b \in B$.

An injection is an injective mapping - a binary relation that is left-unique, right-unique, and left-total

A surjection (or onto mapping) is a surjective mapping - a binary relation that is right-unique, left-total, and right-total.

A mapping is a bijection (or one-to-one correspondence) is a mapping which is injective and surjective. In other words, left-unique, right-unique, left-total, and right-total.

A linear mapping or linear transformation is a map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by a matrix.

For example, given a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

we can define a map $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\forall(x, y) \in \mathbb{R}^{2}: T_{A}(x, y)=(a x+b y, c x+d y)
$$

This is actually matrix multiplication, that is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

For any set S, a bijective mapping $\pi: S \rightarrow S$ is called a permutation.

Suppose $S=\{1,2,3\}$. Define a map $\pi: S \rightarrow S$ by

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
\pi(1) & \pi(2) & \pi(3)
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
$$

It is easy to verify that this map is bijective, hence this map is a permutation of S.

Let S be a set. The identity map $i d_{S}$ is such that

$$
\forall s \in S: s \mapsto s
$$

In example, for $S=\{1,2,3\}$, the identity map $i d_{S}$ is

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
\pi(1) & \pi(2) & \pi(3)
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)
$$

A composition of mappings $f: A \rightarrow B$ and $g: B \rightarrow C$ is a new mapping $h: A \rightarrow C$ defined by

$$
(g \circ f)(x)=g(f(x))
$$

Note that $g(f(x))=(g \circ f)(x) \neq(f \circ g(x))=f(g(x))$.

Consider the following sets

$$
A=\{1,2,3\} \quad B=\{a, b, c\} \quad C=\{x, y, z\} .
$$

Consider mappings

$$
\begin{array}{r}
f: A \rightarrow B \text { defined by }\{1 \mapsto b, 2 \mapsto c, 3 \mapsto a\} \\
g: B \rightarrow C \text { defined by }\{a \mapsto z, b \mapsto z, c \mapsto x\} .
\end{array}
$$

The composition $g \circ f: A \rightarrow C$ is defined by $\{1 \mapsto z, 2 \mapsto x, 3 \mapsto z\}$.

What can you say about the composition $f \circ g$?

Theorem 1
The composition of mappings in associative. That is, for $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D:$

$$
(h \circ g) \circ f=h \circ(g \circ f) .
$$

Proof.
Let $a \in A$. Then

$$
\begin{aligned}
(h \circ(g \circ f))(a) & =h((g \circ f)(a))=h(g(f(a))) \\
& =(h \circ g)(f(a))=((h \circ g) \circ f)(a) .
\end{aligned}
$$

Let $f: A \rightarrow B$ be a mapping. The inverse mapping $f^{-1}: B \rightarrow A$ is a mapping such that

$$
\begin{aligned}
& f \circ f^{-1}=i d_{A} \\
& f^{-1} \circ f=i d_{B}
\end{aligned}
$$

A mapping $f: A \rightarrow B$ is invertible (has a corresponding inverse mapping) iff f is bijective.

The mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\ln (x)$ has an inverse $f^{-1}(x)=e^{x}$.

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f\left(e^{x}\right)=\ln e^{x}=x \\
& \left(f^{-1} \circ f\right)(x)=f^{-1}(\ln x)=e^{\ln x}=x
\end{aligned}
$$

To show that a mapping is invertible iff it is bijective, we need the following lemmas.
Lemma 1
An invertible mapping is injective.
Proof.
Suppose that $f: A \rightarrow B$ is invertible with inverse $f^{-1}: B \rightarrow A$. Then

$$
\begin{aligned}
\forall a, b \in A: f(a)=f(b) & \Longrightarrow f^{-1}(f(a))=f^{-1}(f(b)) \\
& \Longrightarrow\left(f^{-1} \circ f\right)(a)=\left(f^{-1} \circ f\right)(b) \\
& \Longrightarrow i d_{A}(a)=i d_{A}(b) \\
& \Longrightarrow a=b .
\end{aligned}
$$

Consequently, f is injective.

Lemma 2

An invertible mapping is surjective.
Proof.
Suppose that $f: A \rightarrow B$ is invertible with inverse $f^{-1}: B \rightarrow A$. Suppose that $b \in B$. To show that f is surjective, for every $b \in B$ we need to find $a \in A$ such that $f(a)=b$. Indeed, such an a exists:

$$
\forall b \in B: \exists a=f^{-1}(b) \in A: f\left(f^{-1}(b)\right)=\left(f \circ f^{-1}\right)(b)=b .
$$

Consequently, f is surjective.

Theorem 2
A mapping $f: A \rightarrow B$ is invertible iff it is bijective.
Proof.
By Lemmas 1 and 2, an invertible mapping is bijective.
To complete the proof, we will show that any bijective mapping is invertible.

Assume that $f: A \rightarrow B$ is bijective, and let $b \in B$. Since f is surjective, there exists $a \in A$ such that $f(a)=b$. Because f is injective, such a must be unique. Define $f^{-1}: B \rightarrow A$ by letting $f^{-1}(b)=a$.

We have now constructed the inverse of f, hence f is invertible.

Theorem 3
If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective, then the mapping $g \circ f$ is injective.

Proof.
Indeed, since both f and g are injective, then for all $a, b \in A$ it holds that

$$
\begin{aligned}
(g \circ f)(a)=(g \circ f)(b) & \Longrightarrow g(f(a))=g(f(b)) \\
& \Longrightarrow f(a)=f(b) \Longrightarrow a=b .
\end{aligned}
$$

Therefore, $g \circ f$ is an injective mapping.

Theorem 4
If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both surjective, then the mapping $g \circ f$ is surjective.

Proof.

We need to show that the mapping $g \circ f: A \rightarrow C$ is surjective, or, in other words, we need to show that for every $c \in C$ there exists $a \in A$ such that $(g \circ f)(a)=c$.
Since g is surjective, there exists $b \in f(A)$ such that $g(b)=c$. In turn, surjectivity of f implies that there exists $a \in A$ such that $f(a)=b$.
Hence, for every $c \in C$ there exists $a \in A$ such that $(g \circ f)(a)=c$.

Corollary 1

If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective, so is their composition $g \circ f$.

Proof.
This is a direct consequence of Theorems 3 and 4 .

Corollary 2
The composition of permutations is a permutation.
Proof.
This is a direct consequence of Theorems 3 and 4 .

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

