1. Alice sends a cryptogram $m^{e} \bmod n$ to Bob. Can adversary Carol recover $m$ if $m^{e}<n$ ?
2. Alice sends the same RSA encrypted message to three different people with public keys $n=87, n=115, n=187$. Let the public exponent be 3. Adversary Carol intercepts 3 cryptograms $c_{1}=43, c_{2}=80, c_{3}=65$. Assume that the cryptograms were sent in order. It means that cryptogram 43 was sent to a recipient with modulus 87 , cryptogram 80 was sent to a recipient with modulus 115 , etc. Can Eve recover the message without factoring public keys?
3. Adversary Carol intercepted two RSA cryptograms, $y_{1}=537$ sent by Alice to Bob, and $y_{2}=285$ sent by Alice to Eve. Alice knows that Bob's public exponent $e_{1}=18$, and public modulus $n_{1}=943$, while Eve's public exponent $e_{2}=19$, and her public modulus $n_{2}=943$. What is the message $m$ sent by Alice to Bob and Eve?
