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Definition 1 (Divisibility)
Let a and b be integers with a ̸= 0. We say a divides b,
written as a|b, if there exists an integer c such that b = ac,
and we call c the quotient of b by a. We say that a is the
divisor or factor of b, and b is a multiple of a. If a does
not divide b, we write a ̸ |b.

Definition 2 (Trivial Divisor)
A divisor of n is called a trivial divisor if it is either 1 or
n itself. Any other divisor d such that d ̸= 1 and d ̸= n is
called a non-trivial divisor of n.

In example, one can see that 2|6, but 2 ̸ |7.



Some observations:
• 0 is divisible by any integer m, since m · 0 = 0.
• Both 1 and −1 divide any integer n.
• Any n ̸= 0 is divided by n and −n.
• If a|b then also a| − b, −a|b and −a| − b.
• If a|b and a|c then a|(b + c).
• If a|b and a|bc for any integer c.
• If a|b and b|c then a|c.
• If a|b and b|a then a = ±b.
• If a|b and a|c then for all m, n we have a|(mb + nc).
• If a|b then |a| ⩽ |b|.
• Integers 1 and −1 are divisible only by 1 and −1.



Theorem 1 (Division Algorithm)
Let m and n be any positive integers. Then there exist two
unique integers q and r, with q ⩾ 0 and 0 ⩽ r < m, such
that n = qm + r.

Proof.
Let T be the set of positive integers k for which km > n. T
is not empty, since n + 1 ∈ T. Hence, T contains a least
element k0 such that k0m > n, but (k0 − 1)m ⩽ n.
Define q = k0 − 1. Then (q + 1)m > n and qm ⩽ n.
Subtracting qm from both sides of the equations, we get
0 ⩽ n − qm < m. Define r = n − qm and we are done.
For the proof of uniqueness of q and r see the next slide.



Theorem 2 (Division Algirthm (contd.))
Integers q and r from Theorem. 1 are unique.

Proof.
Suppose that there is another pair of integers q′ ̸= 0 and r′
satisfying the conditions n = q′m + r′ with 0 ⩽ r′ < m.
Then we have

qm+r = q′m+r′ =⇒ r−r′ = (q′−q)m =⇒ m|(r−r′) . (1)

From (1) it can be seen that since 0 ⩽ r − r′ < m, the only
case when condition m|(r − r′) will not result in a
contradiction is r = r′, and hence q = q′.



Remark: the uniquely determined numbers q and r are
called quotient and remainder.

Some examples

7 = 2 · 3 + 1 n = 7,m = 3, q = 2, r = 1 ,

7 = 0 · 8 + 7 n = 7,m = 8, q = 0, r = 7 ,

12 = 4 · 3 + 0 n = 12,m = 3, q = 4, r = 0 .



Before we prove a theorem about p-adic expansion of
integers, we need a couple of specific results by the lemmas
below.
Lemma 1
Let b, n be any positive integers. Then

(1 − b)(1 + b + b2 + . . .+ bn) = 1 − bn+1 .

Proof.

(1 − b)(1 + b + b2 + . . .+ bn) = 1 + b + b2 + . . .+ bn

− b − b2 − b3 − . . .− bn+1

= 1 − b + b − b2 + . . .+ bn − bn+1

= 1 − bn+1 .



Lemma 2
Let b be any integer. Then

(b − 1)(1 + b + b2 + . . .+ br) < br+1 .

Proof.
The assertion follows at once from Lemma 1,

(b − 1)(1 + b + b2 + . . .+ bn) = bn+1 − 1 .

Hence,

(b − 1)(1 + b + b2 + . . .+ bn) < bn+1 .



Lemma 3
If b > 1, then br > r for r ⩾ 0.

Proof.
Since 1 < b− 1 by assumption, then for any positive integer
c it holds that c ⩽ (b − 1) · c. Taking
c = 1 + b + b2 + . . .+ br, by Lemma 2 it holds that

1 + b + b2 + . . .+ br ⩽ (b − 1)(1 + b + b2 + . . .+ br) < br+1 .

Every term on the left is ⩾ 1, and there are r + 1 terms. It
follows that

(b − 1)(1 + b + b2 + . . .+ br) ⩾ r + 1 ,

and hence r + 1 < br+1 for r ⩾ 0.



Theorem 3 (b-adic expansion)
Let m be a positive integer, let b be an integer greater than
1. Then there are unique integers a0, a1, a2, . . . , ar such that
m = a0 + a1b + a2b2 . . .+ arbr and 0 ⩽ aj ⩽ b − 1 for
j = 0, . . . , r with ar ̸= 0.



Proof.
Applying the division algorithm as shown below, we define
two sequences of numbers q0, q1, q2 . . . and a0, a1, a2, . . .
connected by the equations

m = q0b + a0

q0 = q1b + a1

q1 = q2b + a2

. . .

qk−1 = qkb + ak

qk = qk+1b + ak+1

. . .



If we substitute q0 into the first equation from the second,
we get

m = (q1b + a1)b + a0 = a0 + a1b + q1b2 .

Substituting q1 from the third equation we get

m = a0 + a1b + (q2b + a2)b2 = a0 + a1b + a2b2 + a2b3 .

After k such steps we obtain the result

m = a0 + a1b + a2b2 + a3b3 + . . .+ ak−1bk−1 + akbk + qkbk+1 .



m = a0+a1b+a2b2+a3b3+. . .+ak−1bk−1+akbk+qkbk+1 . (2)

It can be seen that m ⩾ qkbk+1, since all terms on the right
are ⩾ 0. But bk+1 > k + 1 by Lemma 3. Hence,

m ⩾ qkbk+1 > qk(k + 1) =⇒ m > qk(k + 1) .

This shows that qk = 0 for k > m. Let qr be the first
quotient which is zero. Then equation (2) takes exactly the
form

m = a0 + a1b + a2b2 . . .+ arbr . (3)



To show uniqueness of (3), suppose that

a0 + a1b + a2b2 . . .+ arbr = m = a′
0 + a′

1b + a′
2b2 . . .+ a′

sbs

with 0 ⩽ a′
i < b for i = 1, . . . , s. Then clearly a′

0 is the
remainder obtained by the division of m by b, and so
a′

0 = a0 by the uniqueness of the division algorithm. The
quotient a′

1 + a′
2b+ . . .+ a′

sbs−1 must be the same as q0. The
remainder upon division by b is a′

1, and it must be the same
as the remainder of the division of q0 by b. That is, a′

1 = a1.
Continuing this way, it can be shown that the coefficients of
the same powers of b in the two expressions must be equal.



The expression (3) for a positive integer m is called the
b-adic expansion of m.
It is easy to see that the usual notation for integers is an
abbreviated form of 10-adic expansion.
The same number may have b-adic expansions for any
b > 1.
It is possible to make calculations and express the same
numbers in any b-adic expansion.



In example, for m = 159 and b = 10, applying the division
algorithm, we have

159 = 15 · 10 + 9
15 = 1 · 10 + 5
1 = 0 · 10 + 1
. . .

All the q-s are 0 beyond q1. Using (3) with k = 2, we obtain
10-adic expansion of 159, namely 159 = 1 · 102 + 5 · 10 + 9.



Let’s calculate the 4-adic expansion of 159.

159 = 39 · 4 + 3
39 = 9 · 4 + 3
9 = 2 · 4 + 1
2 = 0 · 4 + 2

The 4-adic expansion of 159 is therefore

159 = 2 · 43 + 1 · 42 + 3 · 4 + 3 ,

or in abbreviated form, 2133. Hence, 15910 = 21334.



Let’s calculate the 2-adic expansion of 159.

159 = 79 · 2 + 1
79 = 39 · 2 + 1
39 = 19 · 2 + 1
19 = 9 · 2 + 1
9 = 4 · 2 + 1
4 = 2 · 2 + 0
2 = 1 · 2 + 0
1 = 0 · 2 + 1

The 2-adic expansion of 159 is therefore

159 = 27 + 24 + 23 + 22 + 2 + 1 .

Hencem, 15910 = 100111112.



It is possible to make calculations and perform arithmetic
operations in any b-adic system. For this, one must know
the addition and multiplication tables for the ”digits” of
b-adic system 0, 1, . . . , b − 1.

I.e., in 5-adic system, we have five digits that we call
0, 1, 2, 3, 4. The addition and multiplication tables are given
below.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 10
2 2 3 4 10 11
3 3 4 10 11 12
4 4 10 11 12 13

(a) 5-adic addition

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 11 13
3 0 3 11 14 22
4 0 4 13 22 31
(b) 5-adic multiplication



An example of 5-adic calculations is given below

4132
+2124
11311

143
×240
12320

+34100
101420

Digital computers use 2-adic (binary) system.

Historical evidence shows that ancient Babylonians used
10-adic as well as 60-adic systems, the former for the
average citizen.



Definition 3 (Greatest Common Divisor)
If n1, n2, . . . , nr are integers different from 0, then an integer
d is called their greatest common divisor (written
d = gcd(n1, n2, . . . , nr)) if

• d > 0
• d divides n1, n2, . . . , nr

• Any integer which divides n1, n2, . . . , nr also divides d

Proposition 1
The greatest common divisor is unique.

Proof.
Let d = gcd(m, n) = d′. By condition (3) above, d|d′ and
d′|d. Hence, d = d′.



Observe that

gcd(m, n) > 0 ,

gcd(m, n) ⩽ |m| ,
gcd(m, n) ⩽ |n| ,
gcd(m, n) = gcd(n,m) = gcd(−m, n)

= gcd(m,−n) = gcd(−m,−n) .



Theorem 4
Let a, b, q, r be integers with b > 0 and 0 ⩽ r < b such that
a = bq + r. Then gcd(a, b) = gcd(b, r).
Proof.
Let c be the divisor of a and b. Then a = αc and b = βc.
We have

αc = βcq + r =⇒ r = αc − βcq = (α− βq)c ,

which implies that c divides r. Hence, every divisor of a
and b is also the divisor of b and r. Therefore,
gcd(a, b) = gcd(b, r).



Let c be the divisor of b and r. Then b = αc and r = βc.
Then

a = αcq + βc = c(αq + β) ,

which implies c divides a. Hence every common divisor of b
and r is also a divisor of a and b. Therefore,
gcd(b, r) = gcd(a, b).



The Euclidean algorithm allows to calculate the greatest
common divisors of the two integers a and b. Suppose that
b < a. Apply a series of successful divisions as follows

a = bq0 + r1 0 ⩽ r1 < b
b = r1q1 + r2 0 ⩽ r2 < r1

r1 = r2q2 + r3 0 ⩽ r3 < r2

· · ·
rk−2 = rk−1qk−1 + rk 0 ⩽ rk < rk−1

rk−1 = rkqk + 0

Then rk = gcd(a, b).



From the division algorithm we have

rk < rk − 1 < . . . < r2 < r1 < b .

The successive remainders decrease steadily, and it follows
that this process must lead to a zero remainder after at
most b steps.

It can be seen that from the division algorithm, all the
remainders ri are positive, so the condition rk = d > 0 is
satisfied.

From the last equation, it can be seen that rk|rk−1. From
next-to-last equation, we get rk−1|rk−2. Hence, rk|rk−2.
Continuing up the list we find that rk divides b and a.
Hence, d|a and d|b.



Let c be any common divisor of a and b. Let a = αc and
b = βc. From the equation a = bq0 + r1, we have

a = bq0 + r1 =⇒ αc = βcq0 + r1

=⇒ r1 = (α− βq0)c =⇒ c|r1 .

From the second equation b = r1q1 + r2 it follows that c|r2,
because c divides both a and b. From the third equation we
find that c|r3.

Continuing down the list we conclude that c divides all the
r-s, and in particular, rk. Hence, the third condition of the
greatest common divisor is satisfied – any integer dividing a
and b also divides rk. Therefore,

rk = gcd(a, b) .



In example, let’s find gcd(1426, 343). It can be seen that

1426 = 4 · 343 + 54
343 = 6 · 54 + 19
54 = 2 · 19 + 16
19 = 1 · 16 + 3
16 = 5 · 3 + 1
3 = 3 · 1 + 0

It can also be seen that

gcd(1426, 343) = gcd(343, 54) = gcd(54, 19)
= gcd(19, 16) = gcd(16, 3)
= gcd(3, 1) = gcd(1, 0) = 1 .

Hence, gcd(1426, 343) = 1.



We might call Euclid’s method the granddaddy of all
algorithms, because it is the oldest nontrivial algorithm that
has survived to the present day.

Donald E. Knuth
The Art of Computer Programming:

Seminumerical Algorithms



It is evident that the algorithm cannot recur indefinitely,
since the second argument strictly decreases in each
recursive call. Therefore, the algorithm always terminates
with the correct answer.

More importantly, it can perform in polynomial time. If the
Euclid’s algorithm is applied to a pair of positive integers
a, b with a ⩾ b, the number of divisions required to find
gcd(a, b) is O(log b) – a polynomial time complexity.



In Complexity Theory, the big O notation is used to express
an asymptotic upper bound of a complexity function, i.e.

g(n) = O(f(n)) ⇐⇒ ∃k > 0∃n0∀n > n0 : g(n) ⩽ k · f(n) .
Or in other words,

lim
n→∞

sup
f(n)
g(n) <∞ .

Figure: Running time g(n) is asymptotically bound by f(n) from
above.



From the Euclidean algorithm

a = bq0 + r1

b = r1q1 + r2

r1 = r2q2 + r3

· · ·
rk−2 = rk−1qk−1 + rk

rk−1 = rkqk + 0

r1 = a − bq0

rk−1 = r2 = b − r1q1

r3 = r1 − r2q2

. . .

rk = rk−2 − rk−1qk−1

it follows that the greatest common divisor of a and b –
rk = gcd(a, b) – is a linear combination of a and b.



The Bézout identity states that

∀a, b > 0∃α, β ∈ Z : αa + βb = gcd(a, b) .

The coefficients a and b are known as Bézout coefficients,
and can be obtained using the extended Euclidean
algorithm.



Table: The Extended Euclidean Algorithm

26 9 a b
8 9 a-2b b
8 1 a-2b b-(a-2b)=3b-a
0 1 a-2b-8(3b-a) = 9a-26b 3b-a

It can be seen that gcd(26, 9) = 1, and we get two
polynomials

9 · 26 + 26 · 9 = 0 , 3 · 9 − 26 = 1 .

The second one contains our Bźout identity, with α = −1
and β = 3. The Bezout identity is

−1 · 26 + 3 · 9 = 1 = gcd(26, 9) .



Table: The Extended Euclidean Algorithm

12 8 a b
4 8 a-b b
4 0 a-b b-2(a-b)=3b-2a

Therefore, gcd(12, 8) = 4, and the Bézout identity is

1 · 12 − 1 · 8 = 4 = gcd(12, 8) .



Definition 4 (Prime Integer)
A positive integer n is called a prime if its only divisors
are 1 and n itself. A positive integer that has non-trivial
divisors is called composite.

Definition 5 (Co-prime Integers)
Integers a and b are called co-prime if their only common
divisors are 1 and −1.

Definition 6 (Co-prime Integers)
Integers a and b are co-prime if gcd(a, b) = 1.



Proposition 2
Every composite number m ⩾ 2 is a product of primes.

Proof.
Let m be the least composite number that is not a product
of primes. The existence of such m is guaranteed by the
well-ordering principle. Then there exist positive integers
m1,m2 < m such that m = m1 · m2. Since m was the least
integer that was not a product of primes, any m′ < m must
be a product of primes. Since m1,m2 < m, they must be
products of primes, and so is m, a contradiction.

Corollary 1
Every composite integer has a prime factor.



Theorem 5 (Euclid, ≈ 2000 B.C.)
There are infinitely many primes.

Proof.
Suppose that p1, p2, . . . , pk are all the primes. Consider the
number p1 · p2 · . . . · pk + 1. If it is a prime, then it is a new
prime. Otherwise by Proposition 2 it has a prime factor q.
If q is one of p1, p2, . . . , pk, then q|(p1 · p2 · . . . · pk) and
p1 · p2 · . . . · pk + 1, which means that q must divide the
difference of these numbers, namely 1, which is impossible.
So q is not one of p1, p2, . . . , pk and must therefore be a new
prime.



Some other results about primes (without proofs).
Theorem 6
If n ⩾ 1, then there exists a prime p such that
n < p ⩽ n! + 1.

Below is the famous Bertrand–Chebyshev theorem,
introduced by Joseph Bertrand in 1845 and proved by
Chebyshev in 1850.
Theorem 7 (Bertrand–Chebyshev Theorem)
Given any real number x ⩾ 1, there exists a prime number
between x and 2x.



Theorem 8
If n ⩾ 2, then there are no primes between n! + 2 and n! +n.

Theorem 9
If n is a composite, then n has a prime divisor p such that
p ⩽ √

n.

Theorem 9 can be used to find all prime numbers up to a
given positive integer x. This procedure is called the Sieve
of Eratosthenes



Lemma 4
If gcd(a, n) = gcd(b, n) = 1, then gcd(ab, n) = 1.

Proof.
By the Bézout identity,

gcd(a, n) = 1 =⇒ ∃α, β ∈ Z : αa + βn = 1 ,

gcd(b, n) = 1 =⇒ ∃γ, δ ∈ Z : γb + δn = 1 .

In turn, this implies that

1 = (αa + βn)(γb + δn)
= (αγ)︸︷︷︸

ϕ

ab + (αδa + βγb + βδn)︸ ︷︷ ︸
ψ

·n

= ϕab + ψn =⇒ gcd(ab, n) = 1 .



Theorem 10 (Fundamental Theorem of
Arithmetic)
Every positive integer n greater than 1 can be written
uniquely as a product of primes

n = pα1
1 pα2

2 · · · pαk
k =

k∏
i=1

pαi
i , (4)

where p1, p2, . . . , pk are distinct primes, and α1, α2, . . . , αk
are natural numbers.
The equation (4) is called the prime power
decomposition of n, or the standard prime
factorization of n.



Proof.
If n is prime, then it is trivially the product of a single
factor. If n is not prime, by Proposition 2, n is a product of
primes.
To show uniqueness of a prime factorization, suppose that
the theorem is false, and let m be the least number that has
two unique prime factorizations.

m = p1p2 · · · pr = q1q2 · · · qs ,

where each pi and each qj is prime. It can be seen that
pi ̸= qj, since otherwise there existed another integer
m′ = m

pi
that also has two different factorizations, thus

contradicting the assumption that m is least such element.



Since p1 and q1q2 · · · qs are all primes, we have

gcd(p1, q1) = gcd(p1, q2) = . . . = gcd(p1, qs) = 1 .

By Lemma 4, this implies that

gcd(p1, q1q2 · · · qs︸ ︷︷ ︸
m

) = gcd(p1,m) = 1 ,

which can never happen, since p1 is a factor of m, and
hence p1|m, a contradiction.



The Euler’s phi function (a.k.a. Euler’s totient
function) for any given n > 0 returns the number of
integers in the range 0, . . . , n − 1 that are co-prime to n.
Let n = pe1

1 · pe2
2 · · · pek

k . Then

ϕ(n) = n ·
∏
p|n

(
1 − 1

p

)
.

This formula works in all cases. However, if n is some
prime p, then the formula takes its simplified form

ϕ(p) = p − 1 .

Let n = p1 · p2, then

ϕ(p1 · p2) = ϕ(p1) · ϕ(p2) .



In example, 12 = 22 · 3

ϕ(36) = ϕ(2232) = 36 ·
(

1 − 1
2

)
·
(

1 − 1
3

)
= 36 · 1

2 · 2
3 = 12 ,

ϕ(6) = ϕ(2 · 3) = ϕ(2) · ϕ(3) = (2 − 1)(3 − 1) = 2 .

Indeed, only two integers are co-prime to 6, they are 1 and
5.




