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Set Theory

Show that (A ∩ B)′ = A′ ∪ B′.

(A ∩ B)′ = {x : x /∈ A ∩ B}
= {x : ¬(x ∈ A ∧ x ∈ B)}
= {x : x /∈ A ∨ x /∈ B}
= {x : x ∈ A′ ∨ x ∈ B′}
= A′ ∪ B′ .



Set Theory
Show that (A ∩ B)′ = A′ ∪ B′.

x ∈ (A ∩ B)′ =⇒ x /∈ A ∩ B
=⇒ x /∈ A ∨ x /∈ B
=⇒ x ∈ A′ ∨ x ∈ B′

=⇒ x ∈ A′ ∪ B′

= (A ∩ B)′ ⊆ A′ ∪ B′ .

x ∈ A′ ∪ B′ =⇒ x /∈ A ∨ x /∈ B
=⇒ x /∈ A ∩ B
=⇒ x ∈ (A ∩ B)′

=⇒ A′ ∪ B′ ⊆ (A ∩ B)′ .

Therefore, (A ∩ B)′ = A′ ∪ B′.



Partitions and Factor Spaces
A partition P of a set X is the set P = {X1,X2, . . . ,Xn}
such that

Xi ∩ Xj = ∅ for i ̸= j∪
i

Xi = X.

Factor space is an image of a set under an equivalence
relation, together with some binary operation on the set of
equivalence classes.

Zn = Z/nZ
Zn = Z

/
≡

a ≡ b ⇐⇒ n|(a − b) .
Factor space Zn is a collection of equivalence classes

Zn = {[0], [1], [2], . . . , [n − 1]} .



Partitions and Factor Spaces

In example, the subsets X1 = {0, 3}, X2 = {1, 4},
X3 = {2, 5} form a partition on Z6 = {0, 1, 2, 3, 4, 5}. It can
be seen that

X1 ∪ X2 ∪ X3 = Z6 ,

X1 ∩ X2 = ∅ ,

X2 ∩ X3 = ∅ ,

X1 ∩ X3 = ∅ .



Partitions and Factor Spaces

Z3 = {[0], [1], [2]} = {0, 1, 2} ,

[0] = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}
[1] = {. . . ,−5,−3,−1, 1, 3, 5, 7, . . .}
[2] = {. . . ,−6,−2, 0, 2, 4, 6, 8, . . .}

It can be seen that [0] ∩ [1] = [0] ∩ [2] = [1] ∩ [2] = ∅ and
[0] ∪ [1] ∪ [2] = Z. Therefore, Z3 partitions Z into 3
equivalence classes [0], [1], [2]. Similarly,

Z4 = {0, 1, 2, 3} , Z5 = {0, 1, 2, 3, 4} , Z6 = {0, 1, 2, 3, 4, 5} .



Cartesian Products

Z3
2 = Z2 × Z2 × Z2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .

Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)} .

Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} .

Z3 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)} .



Cartesian Products

Z2 × Z3 × Z2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(0, 2, 0), (0, 2, 1), (1, 0, 0), (1, 0, 1),
(1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1)} .

Z3 × Z2 × Z2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1),
(2, 0, 0), (2, 0, 1), (2, 1, 0), (2, 1, 1)} .



Binary Relations
Show that function ϕ : Z → 2Z is injective.

2n = 2m =⇒ n = m .

Show that function ϕ : Z → Z defined by ϕ : n 7→ n2 is not
injective. It can be seen that a2 = (−a)2, but a ̸= −a.

a2 = b2 ≠⇒ a = b .

Show that function ϕ : Z → Z defined by ϕ : x 7→ x + 10 is
surjective. It can be seen that for every integer z ∈ Z there
exists its unique preimage z′ = z − 10 ∈ Z, such that
z − 10 + 10 = z.

∀z ∈ Z ∃z′ = z − 10 : z = ϕ(z′) .



Bijections

Let A = {1, 2, 3} and B = {a, b, c}. Define a mapping
ϕ : A → B by

ϕ : 1 7→ a , 2 7→ b , 3 7→ c .

The mapping ϕ : A → B is a bijection iff it is invertible.
Define an inverse mapping ψ : B → A by

ψ : a 7→ 1 , b 7→ 2 , c 7→ 3 .



Bijections
It must hold that

(ψ ◦ ϕ)(a) = a ,

(ϕ ◦ ψ)(b) = b .

The compositions are:

ψ ◦ ϕ : A → A = idA , ϕ ◦ ψ : B → B = idB .

It can be seen that

(ψ ◦ ϕ)(1) = ψ(a) = 1 (ϕ ◦ ψ)(a) = ϕ(1) = a
(ψ ◦ ϕ)(2) = ψ(b) = 2 (ϕ ◦ ψ)(b) = ϕ(2) = b
(ψ ◦ ϕ)(3) = ψ(c) = 3 (ϕ ◦ ψ)(c) = ϕ(3) = c



Bijections

Consider a mapping ϕ : Z → 3Z given by ϕ : n 7→ 3n. To
show that ϕ : Z → 3Z is a bijection, consider an inverse
mapping ψ : 3Z → Z by ψ : n 7→ n

3 . Then

(ϕ ◦ ψ)(a) = ϕ
(a

3

)
= 3 · a

3 = a ,

(ψ ◦ ϕ)(a) = ψ(3a) = 3a · 1
3 = a .

Therefore, ϕ : Z → 3Z is a bijection.



Bijections

Consider a mapping ϕ : Z → Z defined by ϕ : x 7→ x + 15.
To show that ϕ : Z → Z is a bijection, define an inverse
mapping ψ : Z → Z by ψ : x 7→ x − 15. Then

(ϕ ◦ ψ)(a) = ϕ(a − 15) = a − 15 + 15 = a ,

(ψ ◦ ϕ)(a) = ψ(a + 15) = a + 15 − 15 = a .

Therefore, ϕ : Z → Z is a bijection.



Composition of Mappings

Let f : Z → Z be defined by f : n 7→ n + 5, and g : Z → 2Z
be defined by g : n 7→ 2n. Then

(f ◦ g)(x) = f(2x) = 2x + 5 ,

(g ◦ f)(x) = g(x + 5) = 2(x + 5) = 2x + 10 .

The inverse mappings f−1 : Z → Z defined by f : n 7→ n − 5
and g−1 : 2Z → Z defined by g : n → n

2 .

((f ◦ g)−1)(x) = (g−1 ◦ f−1)(x) = g−1(x − 5) = x − 5
2 ,

((f ◦ g) ◦ (g−1 ◦ f−1))(x) = (2x + 5)− 5
2 =

2x
2 = x .



Equivalence Relation

Show that group isomorphism ∼= is an equivalence relation
on the class of groups. Groups (G,⊙) and (H, ◦) are said to
be isomorphic (written G ∼= H) iff there exists a bijection
ϕ : G → H that preserves group operations.

∀a, b ∈ G : ϕ(a ⊙ b) = ϕ(a) ◦ ϕ(b) .

Reflexivity: G ∼= G
Symmetry: G ∼= H =⇒ H ∼= G
Transitivity: G ∼= H ∼= K =⇒ G ∼= K



Partial order relation

Show that | is a partial order relation on the set A. Let
a, b, c ∈ A.

Reflexivity: a|a
Anti-symmetry: a|b ∧ b|a =⇒ a = b
Transitivity: a|b ∧ b|c =⇒ a|c

Show that < is a strict partial order relation on the set A.
Anti-reflexivity: a ̸< a
Asymmetry: a < b =⇒ ¬(b < a)
Transitivity: a < b < c =⇒ a < c




