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Two integers a and b are said to be congruent modulo n
if n divides their difference. In other words, nja — b.

Since congruence is an equivalence relation on the set of
integers, any two congruent integers fall in the same
equivalence class.

a=b (modn)<=nla—b<=3JkecZ:a=b+kn .
Le.,

—1=2 (mod3), 7=1 (mod3), 2=12 (mod?) .



We can define addition @& and multiplication ® in number
domain Z,, by

a® b= (a+b) mod m ,
a®b=(a-b)modm .

Le., in Z3, it holds that
202=2®2=1, 1e2=0,
and in Zs:

203=0, 303=3®2=1, 3®4=2.



modm may be viewed as a function mod m:Z — Z,, .
with the following properties:
« modm is idemponent: (¢ mod m) mod m = a mod m.
(a mod m) mod m = (a+ am) mod m
=(a+am)+m=a+ (a+ B)m
= amod m .

« modm preserves operations (i.e. is a ring
homomorphism):

amod m+ bmod m=a+am+ b+ Sm
=a+b+ (a+8)m
= (a+b) mod m ,
amod m - bmod m= (a+ am)(b+ Bm)
= ab+\(a6+ab+aﬁmlm

€L

=(a-b)mod m .



Conclusion 1
When computing

a+(b-(c+(d-(e+))...)

we can reduce modm whenever we like, the result will not
change.

Conclusion 2
Operations & and ® are somewhat similar to usual addition
+ and multiplication x in 7.

Despite & and ® differ from + and x, we will use the usual
notation + and x whenever appropriate, if it will not cause
confusion.



The following properties hold in Z,,:

Associativity: a+ (b+¢) = (a+ b) + ¢, as well as
a-(b-c)=(a-b)-c

Commutativity: a+b=b+a,and a-b=">b-a
Distributivity: (a4 b)-c= (a-¢c)+ (b- ¢)

Zero: a+0=0+a (0 is the additive identity)
Unit: a-1=1-a (1 is the multiplicative identity)
Additive inverse —a of element a € Z,, is m — a € Z,,,
because

a+(—a)=a+m—a=m=0 (mod m) .



The following properties hold in Z,,:

e Zero divisors: the product of two non-zero elements
can be zero. Le.,

2:3=0 (mod6) , 3:4=0 (mod 6) .
o The sum of two positive elements can be zero. lL.e.,
2+3=0 (modb), 5+7=0 (mod12) .

« Not every element a has a multiplicative inverse
at€Zy,suchthat a-a ! =1. Le., 27" =3 in Zs,
since

2:3=6=1 (mod?5) ,

but 2 is not invertible in Zg.



Since some elements are not invertible in Z,, some
congruence equations with non-invertible coefficients are
not solvable. IL.e.,

2-z=5 (mod7)
is solvable, and the solution is x = 6 because
2:.6=12=5 (mod7) ,
but, the equation
2.-z=5 (mod 6)

is not solvable.



Which elements are invertible in Z,,7

Theorem 1
An element a € Z,, is invertible iff ged(a, m) = 1.

Proof.
Let a € Z,, be such that ged(a, m) = 1. Then, by the
Bézout identity, there exist integers o and S such that

1 =ged(a, b) = aa+ fm=aa (mod m) ,

which means that a™! = a (mod m).

Let a be an invertible element of Z,,. Then there exists
a~' € Z,, such that a- a=* =1 (mod m). Then

a-a '+ Bm=1 for some 3 € Z, and by the Bézout
identity, it means that ged(a, m) = 1.

O]



Theorem 2

Zero divisers are not invertible in Z,,.

Proof.

Let a € Z,,, a # 0 be a zero divisor, i.e. there exists

b € Zp, b+# 0 such that ab=0 (mod m). Assume a is
invertible, i.e. there exists a=! € Z,, such that a-a~ ! =1
(mod m). Then

ab=0 (mod m) => a 'ab=a'-0 (mod m)
— b=0 (mod m) ,

a contradiction.



Theorem 3

The equation ax mod n = ¢ with a, ¢ € Z,, is solvable iff
ged(a, n)|e.

Proof.

If the equation is solvable and ged(a, n) = d, then there
exist integers «, f € Z such that a = ad and n = fd, and
hence d|c, because

c¢=armod n= ar+ kn = adc+ Bdk = (ax+ Sk)d ,

If d = ged(a,n) and d|c, then ged (g, %) = 1, and hence 9 is

invertible modulo %, and the equation $rmod 4 = < is
solvable, i.e. dk € Z :

g$+k%:§ = ar+kn=c = ar=c (mod n) .



How many invertible elements are there in Z,,?

The Euler’s phi function (a.k.a. Euler’s totient
function) for any given n > 0 returns the number of
integers in the range 0,...,n — 1 that are co-prime to n.
Let n=p{" - p3*-- -p,ik. Then

eIl

This formula works in all cases. However, if n is some
prime p, then the formula takes its simplified form

p(p)=p—1.
If n = ny - ng, such that ged(ny, ne) = 1, then

@(n1 - mp) = o(m) - p(na)



Indeed, only two integers are co-prime to 6, they are 1 and
5. Integers co-prime to 12 are {1,5,7,11}, 4 of them in
total.



Theorem 4

If n=pi" - pj
n > 0, then

e (-2 (83

The proof uses inclusion-exclusion principle from counting
theory.

..+ pF is the prime decomposition of n and



Let Py, Ps, ..., P be the subsets of M. We want to count
those elements of M that belong to none of P,, i.e. we want
to compute |M\ U,P,|.

If k=1, then |M\ U,P,| = |M| — |Py|.
If k=2, then |M\ U,P,| = |M| — |Py| — |P2| + | Py N Ps.
If k=3, then:

[MA\ UnPy| = [M] = [P1| = | Po| — | P
+|P1N Pyl 4+ |PoaN P3|+ |PrN P3| —|PyN Py Pl .



General case:
M\ UpPp| =M =21+ 5 — S5+ ... (- 1)Z+...

where

Si= Y €ci)|Pyn...0P,

and the summation is over the set ¢(¢) of all --combinations
of indices 1,2, ...,k There are (f) of them.



Proof.

Let M = Z,,, where m = p{* - p5* - ... - p;*. Let

P, ={x € Z,, : p,|z} be the set of elements in Z,, divisible
by pn. Then ¢(n) = |M\ U, P,|.

This is because a € Z,, is invertible if none iff none of
P1, D2, - - -, D divides a.

PP = —— |
pip;
m
PiyPiy - - Dy



And hence:

m

)
' P1P2Pk
1 1
Pk P2Pk
1

s



Theorem 5 (Chinese Remainder Theorem (CRT))

If ny, g, ...,y are pairwise co-prime integers and if
ai, g, - .., ag are any integers such that 0 < a; < n; for every
1=1,2,...,k, then the system of congruence equations

r=a (mod ny)
T=ay; (mod ny) (1)

r=q; (mod nyg)

k
has a ungiue solution 0 < z < N, where N =[] ny, such
i=1
that x mod n; = a; for every i=1,2,... k.



Proof.
Suppose that z and y are both solutions to (1). Then

Vi=1,2,....k:zmod n; = ymod n; = a; = nylz—y .

Since all n; are pairwise co-prime, their product N also
divides z — y, and hence =y (mod N). Considering that z
and y are nonnegative and less than N, the statement

N|z — y is true only if z = y. Hence, the solution to the
system (1) is unique. O



Theorem 6

Let ny, ny be co-prime integers and let ay, as be any integers
such that 0 < a3 < ny and 0 < ay < ny. Then the solution
to the system of congruence equations

r=a (mod ny)
=ay (mod ny)
18
T = a1 MoNg + A1y s

where my and my are the coefficients of the Bézout identity
ming + mong = 1 = ged(ng, ng).



Proof.
Indeed, considering that by the Bézout identity
mang = 1 — myny,

T = aymong + agmyng = ay(1 — mymy) + agmymy

=a;+ (ag—a;))mmn = x=a (mod ny) .

Similarly, by the Bézout identity, myn; = 1 — myne, and
hence

T = AQ1MaNy + G2M1 N = A1 MaNy + Cbg(l — mgng)

=as+ (a1 — ag)many —> Tz=ay (mod ny) .



L.e., consider the following system of equations

(mod 5)

T=2
r=4 (mod 6)

Since ged(5,6) =1-6 + (—1) -5 = 1, the solution is
=2-6-1+4-5-(—1)=12—20 = —18 = 22 (mod 30).

Indeed, this is the solution to both equations. To verify,
observe that 22 = 2 mod 5 and 22 = 4 mod 6.



Theorem 7

Let ny, no, ..., ng be pairwise co-prime integers and let

ai, ag, . .., ap be any integers such that 0 < a; < n; for all
1=1,2,...,k and let N= ny - ny - ng. Then the solution of
the system of congruence equations

r=a (mod ny)

T=ay (mod ny)

r=q; (mod nyg)
18

k
T = Z a;M;N; (mod N) ,
=1

where N; = nﬁ and M; is the Bézout coefficient satisfying
M;iN;+ min; = 1 = ged(N;, ng).



Proof.
As Nj is a multiple of n; for 7 # j, it holds that

k
CE:Z(]%MZNZ: a’lMlNl ++CL1MZNZ++ (IkMka
=1 =0 (mod n;) =0 (mod n);

Since ged(N;, n;) = 1, the Bézout identity M;N; + m;n; = 1
applies, and hence M;N; =1 — m;n;. And so

= a;M;N; (mod n;) = a;(1—myn;) (mod n;) = a; (mod n;) .

[



L.e., consider the following system of equations

2 (mod b5)
4 (mod 6)
5 (mod 7)

T
X
T

The composite modulus N=5-6-7 = 210.

21
_ 20

21 21
5 R N:—O: 0

M B G 35, Nyg=—=230.



The Bézout identities are:

ged(42,5) = (—=2) - 42+ 17 -5
ged(35,6) = (—1) - 3546 -6
ged(30,7) = (=3) - 30+ 13- 7

Hence, the solution is
r=2-(=2)-4244-(-1)-35+5-(=3)-30
= —168 — 140 — 450 = =758 = 82 (mod 210).

It can be seen that 82 mod 5 =2, 82 mod 6 =4, and
82 mod 7 = 5.
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