
Formal methods: Lecture 2
11.02.2015

Model Checking I:

TRANSITION SYSTEMS

1

Model Checking (MC) problem: intuition

 Correct design means that certain correctness properties

must be satisfied by the system to be developed

 Correctness properties state what behaviours/features

are correct and what are not in the system.

 To apply rigorous verification methods both

 system description and

 correctness properties description

 must be formalised

 System is described formally with its model

 Properties are specified formally as logic expressions.

2

Model Checking (formally)

3

 Satisfaction relation symbolically:

M |=  ?

 “Does model M satisfy logic expression  ?”

 Property  is stated often in temporal logic

 M is a state-transition system that models the behavior of
the implementation to be verified

Procedural view:

 Model checking is an enumeration method of the state
space of M to determine if it satisfies the property .

Advantage of MC

4

 Fully automatic

 Diagnostic trace (counter example) generated by checker
helps to analyze the source of the problem

 Good for bug-hunting, i.e a “debugger” that does not
require full execution of your program.

Modelling

5

How to get M?

1. By the process of abstraction:
 Makes verification possible by retaining the part of the system

that is relevant to modeling;

 Should not discard too much so that the result lacks certainty,
or too little so that the verification is not feasible;

 Usually done by human (novel automatic model extraction
techniques are gaining popularity).

2. By observation and learning (model learning)

Choice of models

6

 We focus on state-transition systems. They are

 acceptable by model checkers;

 mostly finite set of states and transitions;

 also push-down automata/systems are possible;

 source programs can also be used as models, e.g., Pathfinder
for Java code;

 in symbolic encoding the logic formula specify abstract
properties instead of explicit state behavior modelling.

Modeling notions

7

 State

 We want to express what is true in a particular state

 A state is a “snapshot” of the system variables’ valuation(s).

 Transition represents relation between states.

Can be an abstraction of
 C program statement, e.g. x++;

 an electronic circuit

 or just an arrow, the source and destination states of which matter.

Atomicity

8

 Atomic transition – uninterruptable when started

 Atomicity determines the abstraction level of the model

 too big step may miss intermediate states that are relevant;

 too small step may blow up the model unnecessarily.

 Atomicity of transitions must consider concurrency

 possible interleavings of transitions and interactions must be
explicit.

Kripke Structure (KS)

9

One of the classical STSs

4-tuple (S, S0, L, R) over a set of atomic propositions AP
where

 S is a set of (control) states

 S0 is initial state

 L is a labeling function: S  2AP

 R is the transition relation: S x S

Example of KS

10

Assume in s0 x=1 and y=1

 S= {s0, s1}

 S0 = {s0}

 R = {(s0, s1), (s1, s0)}

 L(s0) = {x=1, y=1}

 L(s1) = {x=0, y=1} s0 s1

x:= (x+y) mod 2

x:= (x+y) mod 2

Modeling Reactive System

11

 Reactive systems:

 do not terminate;

 interact with their environment constantly;

 KS is just one way of modeling them.

 Consider KS as a simple modeling language for RS-s.

Properties of reactive systems to verify

 race condition - the output depends on the sequence of

 uncontrollable events. It becomes a bug when events do
 not happen in the order the programmer intended, e.g.

 in file systems, programs may "collide" in their attempts to modify or
access a file, which could result in data corruption;

 in networking, two users of different servers on different ends of the
network try to start the same-named channel at the same time.

 deadlock – all processes are infinitely waiting after each other
 for releasing the resources. Generally undecidable,
 practical only for finite state processes.

 starvation - blocking resources for only some processes.

 etc.

12

Modeling Concurrent Programs with KS

13

 Steps of constructing KS from a program (by Manna, Pnueli):

1. Abstract (sequential) component programs as logic relations.

2. Compose the logic relations for the concurrent program.

3. Compute a Kripke structure from the logic relations.

How it works in practice?

Describing States

14

For abstracting states we use program variables and 1st
order predicate logic…

 true, false, ¬, , , , , →

 extended with equality “=” and interpreted predicate symbols
and function symbols:

 x = y

 even (x)

 odd (x)

 prime (x)

 etc

Example of state abstraction steps

15

x=0;

y=1;

z=2;

y=1;

z=2;

y<z

z is

prime

Selective
observation

Abstraction1

Abstraction2

Express the
relation
between

values
symbolically

Choose only
the variables

of interest

Representing States

16

 Valuation of a state
 A mapping: V  V from observable state variables V to their

value domain V ,

 Symbolic state = set of explicit states
 the set of states is described by a 1st order logic formula

 Instead of enumerating explicit states we use a logic formula
describing the set S0

 Example: S0  (x =1)  (y > 2)

Representing a transition

17

 Transition abstracts a program command (or circuit)

 Distinguish two sets of variables’ values:

 V and V’ for variable valuation in pre- and post-state of the transition,
respectively

 Transition relation is a relation between V and V’
 relation is expressable as a set of pairs of states

 represented as a logic formula on V, V ’ with “=”,

 Example:
 Relation x’ = x+1 describes the effect of program statement x:=x+1

From Logic Relation to Kripke Structure

18

Rules

 S (statespace) is the set of all valuations for V ;

 S0 is the set of all valuations that satisfy S0 (a logic formula)

 If s and s’ are two states, s.t. (s,s’)  R(s,s’) then the pair (s,s’) is
a transition in KS;

 L is defined so that L(s) is the subset of all atomic propositions

true in s.

Example

19

 S0  x = 1  y = 1

 R  x’= (x+y) mod 2

 S = B  B, where B = {0,1}

 S0 = {(1,1)}

 R = {((1,1), (0,1)), ((0,1),(1,1))}

 L(1,1) = {x=1, y=1}

 L(0,1) = {x=0, y=1}

(1,1) (0,1) x:= (x+y) mod 2

Abstracting parallel programs to KS

20

 A parallel program contains sequential processes
 with synchronization primitives: wait, lock and unlock

 processes may share variables

 no assumption about the speed and execution order of
these processes

 Program commands are labeled by l1… ln

 We use C(l1, P, l2) to denote the logic relation of the
transition that represents program P.

How to compute transition relation for
sequential program fragments?

21

 Base case: atomic statements:
 skip % has no effect on data variables

 assignment: x := e

Let C describe valuations before and after executing P: x:=e

C(l1, x:=e , l2) 

 pc= l1  pc’=l2  x’= e  same(V \{x})

 same(Y) means y’= y, for all y  Y.

How to compute transition relation for
sequential program fragments? (2)

22

 Sequential composition
C(l0, P1 ; l: P2, l1) = C(l0, P1, l) ∨ C(l, P2, l1)

 C(l, if b then l1: P1 else l2: P2 end if , l’) is the disjunction of:

 pc = l  pc’= l1  b  same(V)

 pc = l  pc’= l2  ¬ b  same(V)

 C (l1, P1, l’)

 C (l2, P2, l’)

C
o

n
d

itio
n

al
p

art
B

o
d

y p
art

Example: concurrent while-loops sharing a
variable “turn”

23

L0: while (true) do

 NC0: wait (turn =0);

 CR0: turn := 1;

 end while

L0’

L1: while (true) do

 NC1: wait (turn =1);

 CR1: turn := 0;

 end while

L1’

• identify variables, including program counters

• compute set of states and set of initial states

• compute transitions

Example (continued I)

24

L0: while (true) do

 NC0: wait (turn =0);

 CR0: turn := 1;

 end while

L0’

L1: while (true) do

 NC1: wait (turn =1);

 CR1: turn := 0;

 end while

L1’

Identify variables, including program counters:

• V = { pc_0, pc_1, turn}

• domain of pc_0 is L0, NC0, CR0, L0’

• domain of turn is {0,1}

Example (continued II)

25

 Compute set of states and set of initial states

 S= {(L0, L1, 1), (L0, L1, 0), (L0, NC1, 0), (L0, NC1, 1) …}

 S0 = {(L0, L1, 0), (L0, L1, 1)}

L0: while (true) do

 NC0: wait (turn =0);

 CR0: turn := 1;

 end while

L0’

L1: while (true) do

 NC1: wait (turn =1);

 CR1: turn := 0;

 end while

L1’

Example (continued III)

26

L1: while (true) do

 NC1: wait (turn
=1);

 CR1: turn := 0;

 end while

L1’

 Compute transition relation separately & then compose them together:

 For global program counter dom(pc) = {m, m’, }
  represents that one of local pc is taking effect.

L0: while (true) do

 NC0: wait (turn =0);

 CR0: turn := 1;

 end while

L0’

m: cobegin

m’: coend

Example (continued IV)

27

 Transition relations of the composition:

C(L0, P0, L0’)  turn’=turn+1  same(V \ V0)  same(PC \ PC0)

L0: while (true) do

 NC0: wait (turn =0);

 CR0: turn := 1;

 end while

L0’

L1: while (true) do

 NC1: wait (turn =1);

 CR1: turn := 0;

 end while

 L1’

m: cobegin

m’: coend

Summary

28

 Concept of MC (at very high level):
 An automatic procedure that verifies temporal and state properties
 Requires input:

 a state transition system
 a temporal property

 State transition system – Kripke structure (KS):
 KS structure is our (teaching) language
 KS models reactive systems

 An example demonstrated how a concurrent program is
translated to KS:
 Concurrent program to logic relations
 Logic relations to KS.

Next lecture

29

 Temporal properties

 CTL*, CTL and LTL

 Their semantics

 CTL model checking on a Kripke structure

Exercise

30

 Give your definition of APs p, q, r.

L(s0) = {¬ p, ¬ q, ¬ r}

L(s1) = {¬ p, ¬ q, r}

L(s2) = {¬ p, q, ¬ r}

L(s3) = {¬ p, q, r}

L(s4) = {p, ¬ q, ¬ r}

L(s5) = {p, ¬ q, r}

L(s6) = {p, q, ¬ r}

L(s7) = {p, q, r}

s7 s0 s3

s5 s4 s6

s1 s2

