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Model Checking I:  

TRANSITION SYSTEMS 
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Model Checking (MC) problem: intuition 

 Correct design means that certain correctness properties 

must be satisfied by the system to be developed 

 Correctness properties state what behaviours/features 

are correct and what are not in the system. 

 To apply rigorous verification methods both  

  system description and  

 correctness properties description  

 must be formalised 

 System is described formally with its model 

 Properties are specified formally as logic expressions. 
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Model Checking (formally) 
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 Satisfaction relation symbolically: 

M |=  ? 

  “Does model M satisfy logic expression  ?” 

 

 Property  is stated often in temporal logic  

 M is a state-transition system that models the behavior of 
the implementation to be verified 

Procedural view: 

 Model checking is an enumeration method of the state 
space of M to determine if it satisfies the property . 



Advantage of MC 
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 Fully automatic 

 Diagnostic trace (counter example) generated by checker 
helps to analyze the source of the problem 

 Good for bug-hunting, i.e  a “debugger” that does not 
require full execution of your program. 



Modelling 
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How to get M? 
 

1. By the process of abstraction: 
 Makes verification possible by retaining the part of the system 

that is relevant to modeling; 

 Should not discard too much so that the result lacks certainty, 
or too little so that the verification is not feasible; 

 Usually done by human (novel automatic model extraction 
techniques are gaining popularity). 

2. By observation and learning (model learning) 



Choice of models 
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 We focus on state-transition systems. They are 

 acceptable by model checkers; 

 mostly finite set of states and transitions; 

 also push-down automata/systems are possible; 

 source programs can also be used as models, e.g., Pathfinder 
for Java code; 

 in symbolic encoding the logic formula specify abstract 
properties instead of explicit state behavior modelling. 



Modeling notions  
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 State 

 We want to express what is true in a particular state 

 A state is a “snapshot” of the system variables’ valuation(s). 

 

 Transition represents relation between states.  

Can be an abstraction of  
 C  program statement, e.g.  x++; 

 an electronic circuit 

 or just an arrow, the source and destination states of which matter. 



Atomicity 
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 Atomic transition – uninterruptable when started 

 Atomicity determines the abstraction level of the model 

 too big step may miss intermediate states that are relevant; 

 too small step may blow up the model unnecessarily. 

 Atomicity of transitions must consider concurrency  

 possible interleavings of transitions and interactions must be 
explicit. 



Kripke Structure (KS) 
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One of the classical STSs 

 

4-tuple (S, S0, L, R) over a set of atomic propositions AP 
where 

 S   is a set of (control) states 

 S0 is initial state 

 L   is a labeling function:   S  2AP 

 R  is the transition relation:  S x S 



Example of KS 
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Assume in s0       x=1 and y=1 

 S= {s0, s1} 

 S0 = {s0} 

 R = {(s0, s1), (s1, s0)} 

 L(s0) = {x=1, y=1} 

 L(s1) = {x=0, y=1} s0 s1 

x:= (x+y) mod 2 

x:= (x+y) mod 2 



Modeling Reactive System 
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 Reactive systems: 

 do not terminate; 

 interact with their environment constantly; 

 KS  is just one way of modeling them. 

 Consider KS as a simple modeling language for RS-s. 



Properties of reactive systems to verify 

 race condition - the output depends on the sequence of  

  uncontrollable events. It becomes a bug when events do 
 not happen in the order the programmer intended, e.g.  

 in file systems, programs may "collide" in their attempts to modify or 
access a file, which could result in data corruption; 

 in networking, two users of different servers on different ends of the 
network try to start the same-named channel at the same time. 

 deadlock – all processes are infinitely waiting after each other 
 for releasing the resources. Generally undecidable, 
 practical only for finite state processes. 

 starvation - blocking resources for only some processes.  

 etc. 
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Modeling Concurrent Programs with KS 
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 Steps of constructing KS from a program (by Manna, Pnueli): 
 

1. Abstract (sequential) component programs as logic relations. 
 

2. Compose the logic relations for the concurrent program. 
 

3. Compute a Kripke structure from the logic relations. 

 

How it works in practice? 



Describing States 
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For abstracting states we use program variables and 1st 
order predicate logic… 

 true, false, ¬, , , , , → 

 extended with equality “=” and interpreted predicate symbols 
and function symbols: 

 x = y 

 even (x) 

 odd (x) 

 prime (x) 

 etc 

 



Example of state abstraction steps 
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x=0; 

y=1; 

z=2; 

 

y=1; 

z=2; 

 

y<z 

 

z is 

prime 
 

Selective 
observation 

Abstraction1 

Abstraction2  

Express the 
relation 
between 

values 
symbolically 

Choose only 
the variables 

of interest 



Representing States 
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 Valuation of a state 
 A mapping: V  V  from observable state variables V  to their 

value domain V ,   

 Symbolic state = set of explicit states 
 the set of states is described by a 1st order logic formula 

 Instead of enumerating explicit states we use a logic formula 
describing the set S0 

 Example: S0   (x =1)  (y > 2) 



Representing a transition 

17 

 Transition abstracts a program command (or circuit) 

 Distinguish two sets of variables’ values: 

 V and V’  for variable valuation in pre- and post-state of the transition, 
respectively 

 Transition relation is a relation between V and V’  
 relation is expressable as a set of pairs of states 

 represented as a logic formula on V, V ’ with “=”,  

  Example: 
 Relation x’ = x+1 describes the effect of program statement x:=x+1 



From Logic Relation to Kripke Structure 
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Rules 

 S (statespace) is the set of all valuations for V ; 

 S0 is the set of all valuations that satisfy S0   (a logic formula) 

 If s and s’ are two states, s.t. (s,s’)  R(s,s’) then the pair (s,s’) is 
a transition in KS; 

 L is defined so that L(s) is the subset of all atomic propositions 

true in s. 



Example 
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 S0  x = 1  y = 1 

 R  x’= (x+y) mod 2 

 S = B  B, where B = {0,1} 

 

 S0 = {(1,1)} 

 R = {((1,1), (0,1)), ((0,1),(1,1))} 

 L(1,1) = {x=1, y=1} 

 L(0,1) = {x=0, y=1} 

(1,1) (0,1) x:= (x+y) mod 2 



Abstracting parallel programs to KS 
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 A parallel program contains sequential processes 
 with synchronization primitives: wait, lock and unlock 

 processes may share variables 

 no assumption about the speed and execution order of 
these processes 

 Program commands are labeled by l1… ln 

 We use C(l1, P, l2) to denote the logic relation of the 
transition that represents program P. 



How to compute transition relation for 
sequential program fragments? 
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 Base case: atomic statements: 
 skip % has no effect on data variables 

 assignment: x  :=  e  

Let C describe valuations before and after executing P:  x:=e 

C(l1, x:=e , l2)  

 pc= l1  pc’=l2  x’= e  same(V \{x}) 
 

 same(Y)  means y’= y, for all y  Y. 



How to compute transition relation for 
sequential program fragments? (2) 
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 Sequential composition 
C(l0, P1 ;  l: P2, l1) = C(l0, P1, l) ∨ C(l, P2, l1) 
 

 C(l, if b then l1: P1 else  l2: P2 end if , l’) is the disjunction of: 

 
 pc = l  pc’= l1  b  same(V) 

 pc = l  pc’= l2  ¬ b  same(V) 

 C (l1, P1, l’) 

 C (l2, P2, l’) 
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Example: concurrent while-loops sharing a 
variable “turn” 
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L0: while (true) do 

   NC0: wait (turn =0); 

   CR0: turn := 1; 

   end while 

L0’ 

L1: while (true) do 

   NC1: wait (turn =1); 

   CR1: turn := 0; 

   end while 

L1’ 

• identify variables, including program counters 

• compute set of states and set of initial states 

• compute transitions 



Example (continued I) 
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L0: while (true) do 

   NC0: wait (turn =0); 

   CR0: turn := 1; 

   end while 

L0’ 

L1: while (true) do 

   NC1: wait (turn =1); 

   CR1: turn := 0; 

   end while 

L1’ 

Identify variables, including program counters: 

• V = { pc_0, pc_1, turn} 

• domain of pc_0 is L0, NC0, CR0, L0’ 

• domain of turn is {0,1} 



Example (continued II) 
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 Compute set of states and set of initial states 

 S= {(L0, L1, 1), (L0, L1, 0), (L0, NC1, 0), (L0, NC1, 1) …} 

 S0 = {(L0, L1, 0), (L0, L1, 1)} 

L0: while (true) do 

   NC0: wait (turn =0); 

   CR0: turn := 1; 

   end while 

L0’ 

L1: while (true) do 

   NC1: wait (turn =1); 

   CR1: turn := 0; 

   end while 

L1’ 



Example (continued III) 
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L1: while (true) do 

   NC1: wait (turn 
=1); 

   CR1: turn := 0; 

   end while 

L1’ 

 
 
 
 

 
 
 
 Compute transition relation separately & then compose them together: 

 For global program counter dom(pc) = {m, m’, } 
  represents that one of local pc is taking effect. 

L0: while (true) do 

   NC0: wait (turn =0); 

   CR0: turn := 1; 

   end while 

L0’ 

m: cobegin 

m’: coend 



Example (continued IV) 
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 Transition relations of the composition:  

C(L0, P0, L0’)  turn’=turn+1  same(V \ V0)  same(PC \ PC0) 

L0: while (true) do 

   NC0: wait (turn =0); 

   CR0: turn := 1; 

   end while 

L0’ 

L1: while (true) do 

   NC1: wait (turn =1); 

   CR1: turn := 0; 

   end while 

 L1’ 

m: cobegin 

m’: coend 



Summary 
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 Concept of MC (at very high level):  
 An automatic procedure that verifies temporal and state properties 
 Requires input:  

 a state transition system 
 a temporal property 

 State transition system – Kripke structure (KS): 
 KS structure is our (teaching) language 
 KS models reactive systems 

 An example demonstrated how a concurrent program is 
translated to KS: 
 Concurrent program to logic relations  
 Logic relations to KS. 



Next lecture 
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 Temporal properties 

 CTL*, CTL and LTL 

 Their semantics 

 CTL model checking on a Kripke structure 

 



Exercise 

30 

 Give your definition of APs p, q, r. 

L(s0) = {¬ p, ¬ q, ¬ r} 

L(s1) = {¬ p, ¬ q, r} 

L(s2) = {¬ p, q, ¬ r} 

L(s3) = {¬ p, q, r} 

L(s4) = {p, ¬ q, ¬ r} 

L(s5) = {p, ¬ q, r} 

L(s6) = {p, q, ¬ r} 

L(s7) = {p, q, r} 

s7 s0 s3 

s5 s4 s6 

s1 s2 


