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Outline

Informed (Heuristic) search strategies
0 (Greedy) Best-first search
0 A* search

(Admissible) Heuristic Functions
0 Relaxed problem
0 Subproblem

Local search algorithms
0 Hill-climbing search

0 Simulated anneal search
0 Local beam search

0 Genetic algorithms

Online search *
2 Online local search
0 learning in online search



Informed search strategies

m Informed search
0 uses problem-specific knowledge beyond the problem
definition
0 finds solution more efficiently than the uninformed search

m Best-first search

0 uses an evaluation function f(n) for each node

m e.g., Measures distance to the goal — lowest evaluation
0 Implementation:

m Fringe is a queue sorted in increasing order of f-values.
0 Can we really expand the best node first?

m No! only the one that appears to be best based on f(n).
0 heuristic function h(n)

m estimated cost of the cheapest path from node n to a goal node
0 Specific algorithms

m greedy best-first search

m A* search



Greedy best-first search

0 expand the node that is closest to the goal
QO f(n)=hg,(n) Straight line distance heuristic

Straight—line distance
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Greedy best-first search example
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Properties of Greedy best-first search

o Complete?

No — can get stuck in loops, e.g., lasi —> Neamt —> lasi —> Neamt

Yes — complete in finite states with repeated-state checking

a Optimal?

No

o Time?

O(b™) , but a good heuristic function can give dramatic improvement

0 Space?

O(b™) — keeps all nodes in memory
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A¥* search

evaluation function f(n) = g(n) + h(n)
m g(n) = cost to reach the node
m h(n) = estimated cost to the goal from n
m f(n) = estimated total cost of path through n to the goal

an admissible (optimistic) heuristic
m never overestimates the cost to reach the goal
m estimates the cost of solving the problem is less than it actually is
= e.g., h,(n) never overestimates the actual road distances

A* using Tree-Search is optimal if h(n) is admissible

could get suboptimal solutions using Graph-Search

m might discard the optimal path to a repeated state if it is not the first
one generated

m a simple solution is to discard the more expensive of any two paths
found to the same node (extra memory)



hg, (1) : Straight line distance heuristic

Straight—line distance
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A* search example
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Optimality of A*
m Consistency (monotonicity) i(n) <c(n,a,n’)+h(n')
0 n’is any successor of n, general triangle inequality (n, n’, and the goal)
0 consistent heuristic is also admissible

m  A* using Graph-Search is optimal if h(n) is consistent
o the values of f(n) along any path are nondecreasing

i R ——

f(n)=gn)+h(n)
=g(n)+c(n,a,n")+h(n")

> g(n)+h(n)= f(n)



Properties of A*

Suppose C* is the cost of the optimal solution path
0 A* expands all nodes with f(n) < C*
0 A* might expand some of nodes with f(n) = C* on the “goal contour”
0 A* will expand no nodes with f(n) > C*, which are pruned!
0 Pruning: eliminating possibilities from consideration without examination

A* is optimally efficient for any given heuristic function
0 no other optimal algorithm is guaranteed to expand fewer nodes than A*

0 an algorithm might miss the optimal solution if it does not expand all nodes
with f(n) < C*

A* is complete

Time complexity
0 exponential number of nodes within the goal contour

Space complexity
0 keeps all generated nodes in memory
0 runs out of space long before runs out of time



Memory-bounded heuristic search

m lIterative-deepening A* (IDA*)

a

uses f-value (g + h) as the cutoff

m  Recursive best-first search (RBFS)

a

replaces the f-value of each node along the path with the best f-value of its
children

remembers the f-value of the best leaf in the “forgotten” subtree so that it
can reexpand it later if necessary

is efficient than IDA* but generates excessive nodes

changes mind: go back to pick up the second-best path due to the extension
(f-value increased) of current best path

optimal if h(n) is admissible

space complexity is O(bd)

time complexity depends on the accuracy of h(n) and how often the current
best path is changed

m  Exponential time complexity of Both IDA* and RBFS

a

cannot check repeated states other than those on the current path when
search on Graphs — Should have used more memory (to store the nodes
visited)!



hg, (1) : Straight line distance heuristic

Straight—line distance
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RBFS example
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Memory-bounded heuristic search (cont’d)

s SMA* —Simplified MA* (Memory-bounded A*)
0 expands the best leaf node until memory is full
0 then drops the worst leaf node — the one has the highest f-value

0 regenerates the subtree only when all other paths have been shown to look
worse than the path it has forgotten

o complete and optimal if there is a solution reachable
0 might be the best general-purpose algorithm for finding optimal solutions

m [f there is no way to balance the trade off between time an memory,
drop the optimality requirement!



(Admissible) Heuristic Functions

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

]’Ll (n) = the number of misplaced tiles

h2 (1) =total Manhattan (city block) distance

h.:? =7 tiles are out of position

h.? =4+0+3+3+1+0+2+1 =14



Effect of heuristic accuracy

0 Effective branching factor b*
m total # of nodes generated by A* is N, the solution depth is d
m b*is b that a uniform tree of depth d containing N+1 nodes would have

N+1=1+b" +(b*)2 +...+(b*)d

m well-designed heuristic would have a value close to 1
m h2is better than h: based on the b*

0 Domination
= h: dominates h1 if h,(n) > h (nfor any node n
m A* using h2 will never expand more nodes than A* using h:
every node n with 7(;) < " will be expanded

f)=gm)+h(n)<C" = h(n)<C -g(n)
= h(n)<h(m)<C -g(n)

m the larger the better, as long as it does not overestimate!



Inventing admissible heuristic functions

0 hiand h: are solutions to relaxed (simplified) version of the puzzle.

m If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then hi1 gives the shortest solution

m |f the rules are relaxed so that a tile can move to any adjacent square, then
h: gives the shortest solution

0 Relaxed problem: A problem with fewer restrictions on the actions

m Admissible heuristics for the original problem can be derived from the
optimal (exact) solution to a relaxed problem

m Key point: the optimal solution cost of a relaxed problem is no greater than
the optimal solution cost of the original problem

m Which should we choose if none of the h: ... hm dominates any of the others?

We can have the best of all worlds, i.e., use whichever function is most
accurate on the current node

Subproblem * h(n):max{hl(n),---,hm(n)}
a Su

m Admissible heuristics for the original problem can also be derived from the
solution cost of the subproblem.

0 Learning from experience *



Example of subproblems in 8-puzzle

% 2 4 1
* 2 3 4
% 3 1 % %

Start State Goal State



* Acknowledgements

* This set of slides contains several prepared by
Hwee Tou Ng and Stuart Russell, available
from the AIMA pages.



http://aima.cs.berkeley.edu/instructors.html

