
Search 2

Tanel Tammet, Juhan Ernits
Institute of Computer Science

Tallinn University of Technology
tanel.tammet@ttu.ee juhan.ernits@ttu.ee

2015

Outline
 Informed (Heuristic) search strategies

 (Greedy) Best-first search

 A* search

 (Admissible) Heuristic Functions
 Relaxed problem

 Subproblem

 Local search algorithms
 Hill-climbing search

 Simulated anneal search

 Local beam search

 Genetic algorithms

 Online search *
 Online local search

 learning in online search

Informed search strategies

 Informed search
 uses problem-specific knowledge beyond the problem

definition

 finds solution more efficiently than the uninformed search

 Best-first search
 uses an evaluation function f(n) for each node

 e.g., Measures distance to the goal – lowest evaluation

 Implementation:
 Fringe is a queue sorted in increasing order of f-values.

 Can we really expand the best node first?
 No! only the one that appears to be best based on f(n).

 heuristic function h(n)
 estimated cost of the cheapest path from node n to a goal node

 Specific algorithms
 greedy best-first search

 A* search

Greedy best-first search
 expand the node that is closest to the goal

 : Straight line distance heuristic)()(nhnf SLD

Greedy best-first search example

Properties of Greedy best-first search

 Complete?

 Optimal?

 Time?

 Space?

No

No – can get stuck in loops, e.g., Iasi –> Neamt –> Iasi –> Neamt

Yes – complete in finite states with repeated-state checking

)(mbO , but a good heuristic function can give dramatic improvement

)(mbO – keeps all nodes in memory

A* search
 evaluation function f(n) = g(n) + h(n)

 g(n) = cost to reach the node

 h(n) = estimated cost to the goal from n

 f(n) = estimated total cost of path through n to the goal

 an admissible (optimistic) heuristic
 never overestimates the cost to reach the goal

 estimates the cost of solving the problem is less than it actually is

 e.g., never overestimates the actual road distances

 A* using Tree-Search is optimal if h(n) is admissible

 could get suboptimal solutions using Graph-Search
 might discard the optimal path to a repeated state if it is not the first

one generated

 a simple solution is to discard the more expensive of any two paths
found to the same node (extra memory)

)(nhSLD

: Straight line distance heuristic)(nhSLD

A* search example

Optimality of A*
)(),,()(nhnancnh  Consistency (monotonicity)

 n’ is any successor of n, general triangle inequality (n, n’, and the goal)

 consistent heuristic is also admissible

 A* using Graph-Search is optimal if h(n) is consistent
 the values of f(n) along any path are nondecreasing

)()()(nhngnf 

)(),,()(nhnancng 

)()()(nfnhng 

Properties of A*

 Suppose C* is the cost of the optimal solution path
 A* expands all nodes with f(n) < C*

 A* might expand some of nodes with f(n) = C* on the “goal contour”

 A* will expand no nodes with f(n) > C*, which are pruned!

 Pruning: eliminating possibilities from consideration without examination

 A* is optimally efficient for any given heuristic function
 no other optimal algorithm is guaranteed to expand fewer nodes than A*

 an algorithm might miss the optimal solution if it does not expand all nodes
with f(n) < C*

 A* is complete

 Time complexity
 exponential number of nodes within the goal contour

 Space complexity
 keeps all generated nodes in memory

 runs out of space long before runs out of time

Memory-bounded heuristic search

 Iterative-deepening A* (IDA*)
 uses f-value (g + h) as the cutoff

 Recursive best-first search (RBFS)
 replaces the f-value of each node along the path with the best f-value of its

children

 remembers the f-value of the best leaf in the “forgotten” subtree so that it
can reexpand it later if necessary

 is efficient than IDA* but generates excessive nodes

 changes mind: go back to pick up the second-best path due to the extension
(f-value increased) of current best path

 optimal if h(n) is admissible

 space complexity is O(bd)

 time complexity depends on the accuracy of h(n) and how often the current
best path is changed

 Exponential time complexity of Both IDA* and RBFS
 cannot check repeated states other than those on the current path when

search on Graphs – Should have used more memory (to store the nodes
visited)!

: Straight line distance heuristic)(nhSLD

RBFS example

Memory-bounded heuristic search (cont’d)

 SMA* – Simplified MA* (Memory-bounded A*)
 expands the best leaf node until memory is full

 then drops the worst leaf node – the one has the highest f-value

 regenerates the subtree only when all other paths have been shown to look
worse than the path it has forgotten

 complete and optimal if there is a solution reachable

 might be the best general-purpose algorithm for finding optimal solutions

 If there is no way to balance the trade off between time an memory,
drop the optimality requirement!

(Admissible) Heuristic Functions

h1?

h2?

)(1 nh = the number of misplaced tiles

)(2 nh = total Manhattan (city block) distance

= 7 tiles are out of position

= 4+0+3+3+1+0+2+1 = 14

Effect of heuristic accuracy

 Effective branching factor b*
 total # of nodes generated by A* is N, the solution depth is d

 b* is b that a uniform tree of depth d containing N+1 nodes would have

 well-designed heuristic would have a value close to 1

 h2 is better than h1 based on the b*

 Domination
 h2 dominates h1 if for any node n

 A* using h2 will never expand more nodes than A* using h1

every node n with will be expanded

 the larger the better, as long as it does not overestimate!

   dbbbN *2** ...11 

)()(12 nhnh 

*)(Cnf 

*)()()(Cnhngnf  )()(* ngCnh 

)()()(*

21 ngCnhnh 

Inventing admissible heuristic functions

 h1 and h2 are solutions to relaxed (simplified) version of the puzzle.
 If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,

then h1 gives the shortest solution

 If the rules are relaxed so that a tile can move to any adjacent square, then
h2 gives the shortest solution

 Relaxed problem: A problem with fewer restrictions on the actions
 Admissible heuristics for the original problem can be derived from the

optimal (exact) solution to a relaxed problem

 Key point: the optimal solution cost of a relaxed problem is no greater than
the optimal solution cost of the original problem

 Which should we choose if none of the h1 … hm dominates any of the others?

We can have the best of all worlds, i.e., use whichever function is most
accurate on the current node

 Subproblem *
 Admissible heuristics for the original problem can also be derived from the

solution cost of the subproblem.

 Learning from experience *

 )(),...,(max)(1 nhnhnh m

Example of subproblems in 8-puzzle

• Acknowledgements

• This set of slides contains several prepared by
Hwee Tou Ng and Stuart Russell, available
from the AIMA pages.

http://aima.cs.berkeley.edu/instructors.html

