
RSA-CRT fault attack
How RSA signatures work

1. p, q ∈ Z21024 – two sufficiently large primes and modulus n = pq

2. private exponent d ∈ Zφ(n), public exponent e = d−1 ∈ Zφ(n).

3. If µ is the padding scheme (such as FDH, PFDH, PKCS #1 v1.5, PKCS #1 v2.5), the
signature is σ = (µ(m))d (mod n).

4. Verification σe (mod n) = µ(m).

Calculating in Zn (if n is a 2048-bit integer) is slow.
$opens s l speed rsa2048

. . . 1431 s i g n a t u r e s per second ,

. . . 51952 v e r i t i f a c t i o n s per second
At least much slower, compared to calculating in Zp and Zq separately. This gives 4 times perfor-
mance increase. The Chinese Remainder Theorem (CRT) allows to speed-up computations.{

σp ≡ md mod φ(p) (mod p)

σq ≡ md mod φ(q) (mod q)
=⇒ σ = CRT (σp, σq) mod n .

Bellcore attack{
σp ≡ md mod φ(p) (mod p)

σ̂q ̸≡ md mod φ(q) (mod q)
=⇒ σ̂ = CRT (σp, σ̂q) mod n .

If an attacker manages to inject a fault so that she obtains two RSA signatures, one valid signature
σ, and an invalid signature σ̂, then{

(σ − σ̂) ≡ 0 (mod p)

(σ − σ̂) ̸≡ 0 (mod q)
=⇒ gcd(σ − σ̂, n) = p .

This case can be reduced to just the knowledge of one faulty signature – the Boneh–DeMillo–
Lipton attack.

Boneh–DeMillo–Lipton attack{
σp ≡ md mod φ(p) (mod p)

σ̂q ̸≡ md mod φ(q) (mod q)
=⇒ σ̂ = CRT (σp, σ̂q) mod n .

The attack is based on the observation that{
σ̂e ≡ m (mod p)

σ̂e ̸≡ m (mod q)
=⇒

{
σ̂e −m ≡ 0 (mod p)

σ̂e −m ̸≡ 0 (mod q)
=⇒

{
p|σ̂e −m

q ̸ |σ̂e −m
=⇒ gcd(σ̂e −m,n) = p .

1

In some cases the attacker knows the message that is signed, i.e. attacks against TLS, where
messages have pre–defined format, and the values for the required fields, necessary to reconstruct
m, can be obtained by listening over the TLS handshake message exchange.

The attack works for any deterministic padding like FDH or PSS.

Seifert attack
The Bellcore and Boneh–DeMillo–Lipton attacks are fault injection attacks targeted against mod-
ular exponentiation. The Seifert attack targets modular reduction (mod n) instead.{

σp ≡ md mod φ(p) (mod p)

σq ≡ md mod φ(q) (mod q)
=⇒ σ̂ = CRT (σp, σ̂q) mod n .

The attack is executed using orthogonal latices and goes beyond the scope of this course – the
details omitted.

ElGamal cryptosystem
Public parameters are: group G = ⟨g⟩, |G| = q. Alice’s private key: x ∈ Zq, public key (G, q, g, gx),
gx ∈ G. To encrypt a message m to Alice, Bob selects an ephemeral key uniformly at random
y ∈ Zq. The ciphertext is (gy,m · gxy), where gxy ∈ G was obtained as gxy = (gx)y. To decrypt,
Alice uses her private key x to recover gxy ∈ G as gxy = (gy)x. Then she finds the inverse
(gxy)−1 = g−xy ∈ G, and computes m · gxy · g−xy = m.

Assuming that CDH assumption holds, the ElGamal encryption function is a one-way function.
Assuming that DDH assumption holds, ElGamal is IND-CPA secure.

What is DDH assumption?
Distinguish DDH tuples (g, ga, gb, gab) and (g, ga, gb, gz), where z ∈ Z|G| selected uniformly at
random. This problem is believed to be hard, in certain groups.

How can we falsify DDH assumption?
Consider a challenge between an attacker A and the challenger C. The challenger uniformly at
random selects integers a, b ∈ Z|G|, and a bit b ∈ {0, 1}, and if b == 0, then it sends (ga, gb, gab) to
the adversary, if b = 0, then it randomly selects z ∈ Z|G|, and sends (ga, gb, gz) to the adversary. The
goal of the challenger is to output 1 if the adversary thinks (ga, gb, gab) was sent, and 0 otherwise.

Let F be an oracle of the function being studied, and let G be an oracle for an idealized
function of that type. The adversary A is a probabilistic algorithm given F and G as input, and
which outputs 1 or 0. The goal of A is to distinguish F from G based on making queries to the
oracle it’s given. Then the advantage of the adversary is

Adv(A) = |Pr[A(F) = 1]− Pr[a(G) = 1]|
The security assumption holds if

Adv(A) = |Pr[A(F) = 1]− Pr[a(G) = 1]| < ε ,

where ε is negligibly small value. If we manage to show that an adversay has a significant advantage,
compared to random guessing, the cryptographic assumption is falsified, and thus does not hold.

2

The baseline – random guessing
Consider two random variables

X =

{
1 if the challgenger has sent (ga, gb, gab)

0 if the challenger has send (ga, gb, gz)
Y =

{
1 if the adversary thinks he received (ga, gb, gab)

0 if the adversary thinks he received (ga, gb, gz)

Variables X and Y are independent, hence the domain of their joint distribution is

X × Y = {(0, 0), (0, 1), (1, 0), (1, 1)} .

The adversary wins if her guess coincides with what did the challenger do. Hence

Pr[A(G) = 1] = Pr[X = 0, Y = 0] + Pr[X = 1, Y = 1]

= Pr[X = 0] · Pr[Y = 0] + Pr[X = 1] · Pr[Y = 1]

=
1

4
+

1

4
=

1

2
.

By random guessing, in half of the cases the adversary will guess correctly. This is our baseline. To
show that in certain groups the DDH assumption does not hold, we need to provide the description
of the polynomial time algorithm A that would achieve significantly better results than by random
guessing.

DDH is easy in Z×
p

In prime order groups Z×
p , an attacker can calculate the Legendre symbol of ga and gb and thus

reveal the Legendre symbol of gab. It can detect with probability 1 the true negative cases when(
gab

n

)
̸=

(
gz

n

)
.

For prime p, the Legendre symbol

(
a

p

)
= a

p−1
2 =


1 if a is a quadratic residue modulo p and a ̸≡ 0 (mod p),
−1 if a is a quadratic non-residue modulo p,
0 if a ≡ 0 (mod p).

a ∈ Z×
p is a quadratic residue modulo p if there exists x ∈ Z×

p such that x2 ≡ a (mod p).
If ga is a quadratic residue, it means that a is even, the same with gb. The relation between

redusiocity of ga, gb, gab is given in Table 1. Since we can detect true-negative results based on the
expected redusiocity of gab, to model the interaction between the adversary and the challenger,
consider 3 random variables.

X =

{
0 if ga is a square residue,
1 if aa is a square non-residue

Y =

{
0 if gb is a square residue,
1 if ab is a square non-residue

Z =

{
0 if gz is a square residue,
1 if az is a square non-residue

3

Table 1: Redusiocity of gab.

ga gb gab

residue residue residue
non–residue residue residue
residue non–residue residue
non–residue non–residue non–residue

The variables X,Y, Z are independent, hence

X × Y × Z = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .

In the events (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0) the adversary can with probability 1 say that gc ̸=
gab. The probability of each of these events is 1/8. Apart from that, in the other cases, the best the
adversary can do is to randomly select 0 or 1 hoping that her result would match. In approximately
half of these cases the adversary is expected to win by random guessing. Hence, the probability
that an adversary will guess the outcome correctly is

Pr[A(F) = 1] = 4 · 1
8
+ 4 · 1

16
=

3

4
.

The probability that the adversary will guess incorrectly is 1
4 . The advantage of the adversary is

then
Adv(A) = |Pr[A(F) = 1]− Pr[a(G) = 1]| = |3

4
− 1

2
| = 1

4
,

which is not a negligible value ε. Therefore, the DDH assumption does not hold in groups Zp,
since the adversary gains significant advantage in distinguishing gab from a random element of G
by calculating the Legendre symbols for ga and gb.

But the DDH assumption holds in subgroups of k-residues, since every element is a residue and
the advantage of using the Legendre symbol is lost.

DDH is easy in elliptic curves over GF (p) with small embedding degree
Indeed, elliptic groups over GF (p) are groups with pairings (bilinear maps GA ×GB → GT), and
if the embedding degree is small (i.e., supersingular elliptic curves), then these bilinear maps are
efficiently computable. Observe that

c · e(P, P) = e(P, cP) = e(aP, bP) = ab · e(P, P) .

If e(P, cP) = e(aP, bP), then c = ab. This way the adversary can always distinguish between tuples
(P, aP, bP, cP) and (P, aP, bP, abP). If supersingular elliptic curves with high embedding degree
are used, twisted elliptic curves or hyperelliptic curves, the computation of a pairing function is
difficult there, and DDH holds in these elliptic groups.

4

