Lecture 3

Module I: Model Checking

Topic: Property specification in
Temporal Logic CTL*

J.Vain
22.02.2018

Model Checking

MEP?

Given
e M —model
e P —property to be checked on the model M
e = —satisfiability relation (,,M satisfies P*)

Check if M satisfies P

If M = P we say in logic that M is a model of formula P

Model: Kripke Structure (revisited |)

* KS Is a state-transition system that captures
e what is true in a state (denoted as labeling of the state)
* what can be viewed as an atomic move (denoted as transition)
 the succession of states (paths on the model graph)

* KS Is a static representation that can be unfolded to a
tree of execution traces on which temporal properties
are verified.

Representing transition as formuli

* In Kripke structure, transition (s, s’) € R corresponds
to one step of program execution.

 Suppose a program has two steps

X = (X+1) mod 3; x:=(x+1)mod 3
ey = (y+1) mod 3. Q Q

y:=(y+1l)mod 3
R={R, R}

e R :(X'=(x+1)mod 3) A (Y =)
 R,:(y = (y+1) mod 3) A (X' =x)

Consecutive States

e State space:

we can restrict our attention to pairs of consecutive states s = (X, y)
and s'=(x’, y’) in the state space {0, 1, 2} x {0, 1, 2}, i.e.

s,s’e {0,1, 2}x{0, 1, 2}

* Question: Can we construct a logic formula that describes the
relation between any two consecutive states s and s’?

» Assume each pair of consecutive states is an instance of R, e.g. In
set notation R = {/;, A,} and in logic notation R < (R, or R,)

Consecutive states represented by 7, vV R,

Representing transitions (revisited 1)

* In Kripke structure, a transition (s, s’) € R corresponds to one step of
program execution.

e Suppose a program P has two steps
e X = (X+1) mod 3;
ey = (y+1) mod 3;

* For the whole program we have
R=(X=x+1mod3) Ay =y) v ((y=y+1l mod 3) A X’=X)

* (s, §’) that satisfies R means that from state s we can get to s’ by some
step of execution that satisfies R.

A glant R

* We can compute R for the whole program

 then we will know whether any of states is one-step reachable
from some other

« Convenient, but globally we loose information:
e.g., the order in which the statements are executed

e« Comment:
» without ordering, the disjuncts in R have not clear precedence!

Introducing program counter

 In the computer, the order of execution is controlled by program
counters.

* We introduce an auxilliary variable pc, and assume the program
commands are labeled with 1,,.. , 1.

 For instance

* In the program:
e 1,2 X 1= x+1;
e 1,2 y 1= x+1;
N P

* In the logic:
e Ry :X'=x+1AYy=yApc=Il,Apc’=1;
e R,:y’=y+1 AX’=xApc=l,Apc’=1,

Now we have complete logic representation of program execution in
our computation model M!

Temporal logic CTL*

e Semantics
KS and its logic representation are static models of program execution

10

Dynamic model of program execution =
unfolding of the static model

Branching time: tree structure Linear time: traces

°t

Is a formula valid at a given Is a formula valid
node, which represents a along a given path?
subtree?

11

CTL* (Computation Tree Logic)

« Covers both branching time and linear time logics
» Basic Operators

e X: neXt
 F: Future ()
» G: Global (D
o U: Until

* R: Release

12

CTL*

 State formulas (are interpreted in states)
e EXpress properties of states

» Use path quantifiers:
e A —for all paths,
e E - for some paths

« Path formulas (are interpreted on paths)
e EXpess properties of paths

» Use state quantifiers:
» G - for all states (of the path)
» F — for some state (of the path)

13

State Formulas (1)

e Atomic propositions:
 If p € AP, then p is a state formula
« Examples: x > 0, odd(y)

e Propositional combinations of state formulas:

=@, oV, Ay ...
e Examples:
o x>0\ odd(y),
» req = (AF ack)
* “A” Is a path quantifier
« “F ack” is a path formula
* “AF ack” is a state formula (interpreted in a state)

14

State Formulas (2)

e Quantifiers A and E make a state formula from a path
formula interpreted in the scope of A or E.

* E@, where ¢ is a path formula, which expresses property of a path
* E means “there exists”
* E ¢- ¢@is true on some path from this state on.

Ao
* A means “for all paths”
* A - ¢@is true on all paths starting from this state.

15

Forms of Path Formulas

A state formula ¢
e ¢ Is true in the first state of this path

 For path formulas ¢ and v, the path formulas are:
*To VY, oAy
*Xo. Fo, Go oUy, @Ry

e X —next

e F —eventually
e G —globally

e U —until

R —releases

16

Path Formulas (I): Next-operator

X @, where ¢ is a path formula

¢ is valid for the suffix of this path (path minus the
first state)

Head of path

States: ““Head of suffix
@ - ¢pis true
(- ¢ can be either true or false in other states

17

Path Formulas |l: Eventually-operator

F o
@ is valid for this path

Suffix of the path

Head of path

@ s false
@ - pistrue
(- pcan be either true or false

18

Path Formulas (lI1): Globally-operator

oG¢

» pis valid for head and every suffix of this path

Suffix of path

Head of path

@ - @IS true

19

Path Formulas IV: Until-operator

*pUy
IS valid on a suffix of the path, before the first

node of which @ is valid on every suffix thereon

’,".\’ /O

@ - @IS true
@ -y Is true
O -¢ and y are either true or false

20

Path Formulas (V). Release-operator

o Ry
* v has to be true until and including the point where ¢
becomes true; if @ never becomes true then i must

remain true forever

‘oo O —®

2)

@ @ T @ @ @
@ - ¢lstrue \
@ - Vv Istrue @ never gets true

@ - w can be either true or false

21

Formal semantics of CTL* (1)

» Notations
*M,sE ¢ Iff @ holds in state s of model M
M, 7k @ Iff @ holds along the path z in M

e 7' : i-th suffix of =
* T=5y Sy, ...,thenzt =5, ...

22

Semantics of CTL* (2)

e Path formulas are interpreted on paths:
M rTE @
M rEXg@p
M rEF @
M, rE Uy

23

Semantics of CTL* (3)

 State formulas are interpreted over a set of states (of a path)
e M,SEDp
e M,s E - (0]
M, sEE @
M, sEAp

24

CTL

e Quantifiers over paths
* A ¢—All: ¢ has to hold on all paths starting from the current state.

* E ¢ — Exists: there exists at least one path starting from the current
state where ¢ holds.

 In CTL, path formulas can occur only when paired with Aor E, i.e. one
state operator followed by a path operator.

if @ and yare state formulas, then

are path formulas

25

LTL (contains only path formulas)

Path formulas.

» If p € AP, then p is a path formula
» If pand yare path formulas, then
~Q
PVy
N4

PRy
are path formulas.

26

CTL vs. CTL*

* CTL*, CTL and LTL have different expressive powers:

* Example:
e In CTL there is no formula being equivalent to LTL formula
A(FG p).
* In LTL there is no formula equivalent to CTL formula AG(EF
p).
* A(FG p) v AG(EF p) is a CTL* formula that cannot be
expressed neither in CTL nor in LTL.

27

Minimal set of CTL temporal operators

* Transformations used for mapping temporal operators to minimal set
of temporal operators {EU, EF, EG}:

« EF p==E [true U ¢] (because F ¢ == [true U ¢])
*c AX p===EX(= ¢)

* AG p==-EF(- ¢)==-E [true U -¢p]

« AF p==A[true U p]1===EG - ¢

* AlpUy] == =(E[(-) U=(oV W] VEG (-y))

28

Summary

o CTL* Is general temporal logic that offers strong
expressive power, more than CTL and LTL separately.

« CTL and LTL are practically useful enough; CTL* helps
to understand the relations between LTL and CTL.

e In the next lecture we will show how to check
satisfiability of CTL formuli on Kripke structures.

29

	Lecture 3�Module I: 	Model Checking �Topic: 		Property specification in 				Temporal Logic CTL*
	Model Checking
	Model: Kripke Structure (revisited I)
	Representing transition as formuli
	Consecutive States
	Consecutive states represented by R1 ∨ R2
	Representing transitions (revisited II)
	A giant R
	Introducing program counter
	Temporal logic CTL*
	Dynamic model of program execution = unfolding of the static model
	CTL* (Computation Tree Logic)
	CTL*
	State Formulas (1)
	State Formulas (2)
	Forms of Path Formulas
	Path Formulas (I): Next-operator
	Path Formulas II: Eventually-operator
	Path Formulas (III): Globally-operator
	Path Formulas IV: Until-operator
	Path Formulas (V): Release-operator
	Formal semantics of CTL* (1)
	Semantics of CTL* (2)
	Semantics of CTL* (3)
	CTL
	LTL (contains only path formulas)
	CTL vs. CTL*
	Minimal set of CTL temporal operators
	Summary

