
Constraint Satisfaction Problems

Juhan Ernits
Institute of Computer Science

Tallinn University of Technology
Juhan.ernits@ttu.ee

2015



Outline

• Constraint Satisfaction Problems (CSP)

• Backtracking search for CSPs

• Local search for CSPs

• Tree search and decomposition of CSPs



Constraint satisfaction problems (CSPs)

• Standard search problem:
– state is a "black box“ – any data structure that supports successor 

function, heuristic function, and goal test

• CSP:
– state is defined by variables Xi with values from domain Di

– goal test is a set of constraints specifying allowable combinations of 
values for subsets of variables

• Simple example of a formal representation language

• Allows useful general-purpose algorithms with more power 
than standard search algorithms



Example: Map-Coloring

• Variables WA, NT, Q, NSW, V, SA, T
• Domains Di = {red,green,blue}
• Constraints: adjacent regions must have different colors
• e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 

(green,blue),(blue,red),(blue,green)}



Example: Map-Coloring

• Solutions are complete and consistent assignments, 
e.g., WA = red, NT = green,Q = red,NSW = green,V = 
red,SA = blue,T = green



Constraint graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are constraints



Varieties of CSPs

• Discrete variables
– finite domains:

• n variables, domain size d  O(dn) complete assignments

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

– infinite domains:
• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
– e.g., start/end times for Hubble Space Telescope observations

– linear constraints solvable in polynomial time by linear programming



Example: Job-shop scheduling
• E.g. schedule  day’s worth of jobs in a factory

Precedence constraints:

(Disjunctive constraints)

(Finite domain)

(If inspection takes 3 minutes, can all be done in 30 minutes?)



Varieties of constraints

• Unary constraints involve a single variable, 

– e.g., SA ≠ green

• Binary constraints involve pairs of variables,

– e.g., SA ≠ WA

• Global constraints involve 3 or more variables,

– e.g., cryptarithmetic column constraints

– e.g. allDiff constraints (all values different)



Example: Cryptarithmetic

• Variables: F T U W 
R O C1 C2 C3

• Domains: {0,1,2,3,4,5,6,7,8,9}

• Constraints: Alldiff (F,T,U,W,R,O)
– O + O = R + 10 · C1

– C1 + W + W = U + 10 · C2

– C2 + T + T = O + 10 · C3

– C3 = F



Real-world CSPs

• Assignment problems
– e.g., who teaches what class

• Timetabling problems
– e.g., which class is offered when and where?
– Involves preference constraints in addition to absolute ones

• Transportation scheduling
• Factory scheduling

• Notice that many real-world problems involve real-
valued variables



Solving CSPs

• There are two main approaches for solving 
CSPs:

– Inference

– Search

• Sometimes CSPs can be solved by inference 
alone.

• In other cases, solving CSP-s involves a 
combination of inference and search. 



Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

• Initial state: the empty assignment { }
• Successor function: assign a value to an unassigned variable that does not 

conflict with current assignment
 fail if no legal assignments

• Goal test: the current assignment is complete

1. This is the same for all CSPs
2. Every solution appears at depth n with n variables

 use depth-first search
3. Path is irrelevant, so can also use complete-state formulation
4. b = (n - l )d at depth l, hence n! · dn leaves
5. Can be fixed by the observation that variables in CSPs are commutative



Backtracking search

• Variable assignments are commutative}, i.e.,
[ WA = red then NT = green ] same as [ NT = green then WA = red ]

• Only need to consider assignments to a single variable at each node
 b = d and there are dn leaves

• Depth-first search for CSPs with single-variable assignments is called 
backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs

• Can solve n-queens for n ≈ 25



Backtracking example



Backtracking example



Backtracking example



Backtracking example



Improving backtracking efficiency

• General-purpose methods can give huge gains 
in speed:

– Which variable should be assigned next?

– In what order should its values be tried?

– Can we detect inevitable failure early?



Backtracking search



Backtracking search



Most constrained variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)
heuristic



Most constraining variable

• Tie-breaker among most constrained variables

• Most constraining variable:

– choose the variable with the most constraints on 
remaining variables



Least constraining value

• Given a variable, choose the least constraining 
value:
– the one that rules out the fewest values in the 

remaining variables

• Combining these heuristics makes 1000 queens 
feasible



Forward checking

• Idea: 
– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values



Forward checking

• Idea: 
– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values



Forward checking

• Idea: 
– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values



Forward checking

• Idea: 
– Keep track of remaining legal values for unassigned variables

– Terminate search when any variable has no legal values



Constraint propagation

• Forward checking propagates information from assigned to 
unassigned variables, but doesn't provide early detection for 
all failures:

• NT and SA cannot both be blue!
• Constraint propagation repeatedly enforces constraints locally



Inference

• Forward checking

• Constraint propagation

– Node consistency

• All unary constraints of a variable satisfied

– Arc consistency

• Every value in the domain of a variable satisfies the 
variable’s binary constraints

– Path consistency

– K-consistency



Arc consistency

• Arc consistency makes each binary constraint (arc) consistent

• X Y is consistent iff
for every value x of X there is some allowed y



Arc consistency

• Arc consistency makes each binary constraint (arc) consistent

• X Y is consistent iff
for every value x of X there is some allowed y



Arc consistency

• Arc consistency makes each binary constraint (arc) consistent

• X Y is consistent iff
for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked



Arc consistency

• Arc consistency makes each binary constraint (arc) consistent
• X Y is consistent iff

for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment



Arc consistency algorithm AC-3

• Time complexity: O(n2d3)



Arc consistency algorithm AC-3



Sudoku



Sudoku

Arc consistency is able to solve some Sudoku puzzles and no classical search is needed!



Local search for CSPs

• Hill-climbing, simulated annealing typically work with 
"complete" states, i.e., all variables assigned

• To apply to CSPs:
– allow states with unsatisfied constraints
– operators reassign variable values

• Variable selection: randomly select any conflicted variable

• Value selection by min-conflicts heuristic:
– choose value that violates the fewest constraints
– i.e., hill-climb with h(n) = total number of violated constraints



Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)
• Actions: move queen in column
• Goal test: no attacks
• Evaluation: h(n) = number of attacks

• Given random initial state, can solve n-queens in almost 
constant time for arbitrary n with high probability (e.g., n = 
10,000,000)



Utilising the structure of problems

Topological sorting of nodes



Tree search



Tree search



Tree search on general graphs



Tree decomposition

•Every variable in the original problem 
appears in at least one of  the subproblems
• If two vars are connected by a contraint in 
the orig. Problem, they must appear 
together in at least one subproblem
•IF a variable appears in two subproblems
in the tree, it must appear in every 
subproblem along the path connecting the 
subproblems.



Summary

• CSPs are a special kind of problem:
– states defined by values of a fixed set of variables
– goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node

• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

• Constraint propagation (e.g., arc consistency) does additional work to 
constrain values and detect inconsistencies

• Iterative min-conflicts is usually effective in practice

• If a problem is too hard to solve, break it into pieces and try solving it 
piece by piece


