
1. Suppose you wish to establish a session key with Alice using the DH algorithm. Suppose that you
agreed with her that you will be both using a group Z∗

27 generated by 5. Explain how do you establish
a common session key with Alice, provided that Alice’s share of the session key is 2.

(a) Select my private key x ∈ {1, 2, . . . , φ(27)} uniformly at random. Let x = 6.
(b) Send 56 mod 27 = 19 to Alice.
(c) Receive Alice’s share y = 2.
(d) Obtain the session key by computing 26 mod 27 = 10.

2. Suppose you are Carol who is eavesdropping on the communication session between Alice and Bob,
who are about to establish a common session key using the DH algorithm. You know that they both
use group Z9 generated by 2. You see that Alice sent 7 to Bob, and Bob sent 5 to Alice. You have
intercepted both messages - what are your subsequent actions to execute a MITM attack? Why is
this attack possible?

(a) Select my private key z ∈ {1, 2, . . . , φ(9)} uniformly at random. Let z = 3.
(b) Send your share of the session key 23 mod 9 = 8 to Alice and Bob
(c) Compute the session key to communicate with Alice as 73 mod 9 = 1.
(d) Compute the session key to communicate with Bob as 53 mod 9 = 8.

The MITM attack is possible due to the lack of authentication of the communicating parties.

3. Which computational problem does the security of DH rely on?
The security of DH is based on the assumption about one–wayness of the modular exponentiation
operation. It is believed that the inverse operation ϕ : x 7→ gx mod n, the discrete logarithm problem
(given gx mod n, find x) cannot be efficiently solved.

4. Given an RSA public exponent value e = 3, find suitable values of primes p and q.
Suitable values of p and q must satisfy the identity gcd(3, p− 1) = gcd(3, q − 1) = 1.

5. What is wrong with making RSA calculations in rings Zp or Zp2 instead of a ring Zn with composite
modulus?
An attacker can efficiently calculate φ(p) = p−1 and φ(p2) = p2−p and obtain the private exponent.

6. Given p = 5, q = 11, e = 3, encrypt a message m = 32, and decrypt it.
Encryption: 323 mod 55 = 43. Decryption: 4327 mod 55 = 32.

7. Given p = 13, q = 17, e = 5, sign a message m = 19, and verify the signature it.
Signature: 1977 mod 221 = 15. Verification: 155 mod 221 = 19

8. Factor RSA modulus n = 323 into its prime factors p and q, given a square root of unity in Z323,
which is 305.

gcd(323, 304) = 19

gcd(323, 306) = 17

Hence, 323 = 17 · 19.



9. Find the square roots of 1 in Z143, where 143 = 11 · 13.
By the Bézout identity, 6 · 11 − 5 · 13 = 1, hence applying ψ : Z11 × Z13 → Z143, the two of the
non-trivial square roots are

(1, 12) 7→ 13 · (−5) + 12 · 6 · 11 mod 143 = 12

(10, 1) 7→ 10 · (−5) · 13 + 1 · 6 · 11 mod 143 = 131

The other two square roots of unity are trivial roots 1 and 142.

10. Solve for x:

x ≡ 2 mod 3

x ≡ 3 mod 4

Solution: x ≡ 2 · 4− 3 · 3 mod 12 = 11.

11. Show that Z∗
5 is generated by 2.

〈2〉 = {2, 4, 3, 1} = Z∗
5. Therefore, 2 generates Z∗

5.

12. Find ord(4) ∈ Z∗
11.

〈4〉 = {4, 5, 9, 3, 1}. It can be seen that 5 is the smallest integer satisfying 45 ≡ 1 mod 11, and hence
ord(4) = 5.

13. Show that all non-identity elements are generators of Z7.
Z7 is a prime order group, and by the Lagrange theorem, for any a ∈ Z7, either ord(a) = 1 or
ord(a) = 7. Since the identity 0 is unique and ord(0) = 1, all the other elements must have order 7,
which makes them generators of Z7.

14. Show that an element of order 6 cannot exist in Z∗
16.

ord(Z∗
16) = φ(16) = 8, and by the Lagrange theorem, a group with 8 elements can have elements of

orders 1, 2, 4, 8. Z∗
16 cannot contain an element of order 6.

15. Show that a subgroup of order 5 cannot exist in Z∗
15.

It can be seen that ord(Z∗
15) = φ(15) = 8, and by the Lagrange theorem, possible orders of subgroups

are 1, 2, 4, 8. A subgroup of order 5 cannot exist in Z∗
15.

16. If a group G contains elements of order 4 and order 7, what are possible orders of G?
Any multiple of lcm(4, 7).

17. A group G contains an element a ∈ G such that a12 is the identity element in G. What are the
possible orders of a?
Any ord(a) ∈ {d ∈ N : d|12}, that is, 1, 2, 3, 4, 6, 12.

18. Show that RSA is homomorphic w.r.t multiplication.
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19. Find a collision of a hash function h : Z× Z → Z6 defined by h : (a, b) 7→ ab mod 6.
An example of a collision is (0, a), (b, 0) for all a, b ∈ Z. Another example of a collision is (1, 1) and
(1, 7), also (1, 8) and (2, 4), also (3, 3) and (3, 5), …



20. Given a hash function h : Z× Z → Z12 defined by h : (a, b) 7→ ab mod 12 find a pre–image of 9.
One of the pre–images of 9 is, in example, (3, 7).

21. Given a hash function h : Z×Z → Z11 defined by h : (a, b) 7→ ab mod 11, given a hash value 10, and
a pre–image (10, 1), find a second pre–image of 10.
(3, 7) is a second pre–image of 10.

22. Given a hash function h : Z → Z∗
11 defined by h : x 7→ 2x mod 11, given a hash value 8 and a

pre–image 3, find a second pre–image of 8.
Examples of such collisions are elements in the set {13 + 10k} for k ∈ N.

h(13) = 213 mod 11 = 8 h(23) 7→ 223 mod 11 = 8 h(33) 7→ 233 mod 11 = 8

h(43) 7→ 243 mod 11 = 8 h(53) 7→ 253 mod 11 = 8 h(63) 7→ 263 mod 11 = 8

. . . . . . . . .


