. Suppose you wish to establish a session key with Alice using the DH algorithm. Suppose that you
agreed with her that you will be both using a group Zj, generated by 5. Explain how do you establish
a common session key with Alice, provided that Alice’s share of the session key is 2.

a) Select my private key x € {1,2,...,¢(27)} uniformly at random. Let x = 6.

b) Send 5% mod 27 = 19 to Alice.

(c¢) Receive Alice’s share y = 2.
)

(
(

(d) Obtain the session key by computing 2% mod 27 = 10.

. Suppose you are Carol who is eavesdropping on the communication session between Alice and Bob,
who are about to establish a common session key using the DH algorithm. You know that they both
use group Zg generated by 2. You see that Alice sent 7 to Bob, and Bob sent 5 to Alice. You have
intercepted both messages - what are your subsequent actions to execute a MITM attack? Why is
this attack possible?

(a) Select my private key z € {1,2,...,¢(9)} uniformly at random. Let z = 3.

(b) Send your share of the session key 2° mod 9 = 8 to Alice and Bob

(c) Compute the session key to communicate with Alice as 7° mod 9 = 1.
)

(d) Compute the session key to communicate with Bob as 5% mod 9 = 8.
The MITM attack is possible due to the lack of authentication of the communicating parties.

. Which computational problem does the security of DH rely on?

The security of DH is based on the assumption about one-wayness of the modular exponentiation
operation. It is believed that the inverse operation ¢ : x +— ¢* mod n, the discrete logarithm problem
(given g® mod n, find z) cannot be efficiently solved.

. Given an RSA public exponent value e = 3, find suitable values of primes p and q.

Suitable values of p and ¢ must satisfy the identity ged(3,p — 1) = ged(3,¢ — 1) = 1.

. What is wrong with making RSA calculations in rings Z, or Z,: instead of a ring Z,, with composite
modulus?

An attacker can efficiently calculate p(p) = p—1 and ¢(p?) = p* —p and obtain the private exponent.

. Given p =5,q = 11,e = 3, encrypt a message m = 32, and decrypt it.
Encryption: 323 mod 55 = 43. Decryption: 43%" mod 55 = 32.

. Given p =13,q = 17,e = 5, sign a message m = 19, and verify the signature it.

Signature: 19”7 mod 221 = 15. Verification: 15° mod 221 = 19

. Factor RSA modulus n = 323 into its prime factors p and ¢, given a square root of unity in Zsos,
which is 305.

ged(323,304) = 19
ged(323,306) = 17

Hence, 323 = 17 - 19.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

Find the square roots of 1 in Z43, where 143 = 11 - 13.

By the Bézout identity, 6 - 11 — 5 - 13 = 1, hence applying ¢ : Z1; X Z13 — Z143, the two of the
non-trivial square roots are

(1,12) = 13- (=5) + 126 - 11 mod 143 = 12
(10,1) = 10+ (=5)-13+1-6-11 mod 143 = 131
The other two square roots of unity are trivial roots 1 and 142.

Solve for z:

xr =2mod 3
r =3 mod4
Solution: x =2-4—3-3 mod 12 = 11.
Show that Z? is generated by 2.
(2) ={2,4,3,1} = Z;. Therefore, 2 generates Z;.
Find ord(4) € Z3,.
(4) = {4,5,9,3,1}. Tt can be seen that 5 is the smallest integer satisfying 4°> = 1 mod 11, and hence
ord(4) = 5.
Show that all non-identity elements are generators of Z;.

Z7 is a prime order group, and by the Lagrange theorem, for any a € Z;, either ord(a) = 1 or
ord(a) = 7. Since the identity 0 is unique and ord(0) = 1, all the other elements must have order 7,
which makes them generators of Zs.

Show that an element of order 6 cannot exist in Zj.

ord(Zis) = ¢(16) = 8, and by the Lagrange theorem, a group with 8 elements can have elements of
orders 1,2,4,8. Zj; cannot contain an element of order 6.

Show that a subgroup of order 5 cannot exist in Zj;.

It can be seen that ord(Z;;) = ¢(15) = 8, and by the Lagrange theorem, possible orders of subgroups
are 1,2,4,8. A subgroup of order 5 cannot exist in Zj;.

If a group G contains elements of order 4 and order 7, what are possible orders of G?
Any multiple of lem(4, 7).

A group G contains an element a € G such that a'? is the identity element in G. What are the
possible orders of a?

Any ord(a) € {d € N: d|12}, that is, 1,2,3, 4,6, 12.
Show that RSA is homomorphic w.r.t multiplication.

(m{ mod n)(ms§ mod n) = mim§ mod n = (myms)® mod n

(m¢ mod n)(m4 mod n) = m9md mod n = (m1my)* mod n

Find a collision of a hash function h : Z x Z — Zg defined by h : (a,b) — ab mod 6.

An example of a collision is (0, a), (b,0) for all a,b € Z. Another example of a collision is (1,1) and

(1,7), also (1,8) and (2,4), also (3,3) and (3,5), ..
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21.

22.

Given a hash function h : Z X Z — Zi5 defined by h : (a,b) — ab mod 12 find a pre-image of 9.
One of the pre-images of 9 is, in example, (3,7).
Given a hash function h : Z X Z — Z1; defined by h : (a,b) — ab mod 11, given a hash value 10, and
a pre—image (10, 1), find a second pre-image of 10.
(3,7) is a second pre-image of 10.
Given a hash function h : Z — Zj, defined by h : © — 2% mod 11, given a hash value 8 and a
pre—image 3, find a second pre—image of 8.
Examples of such collisions are elements in the set {13 + 10k} for k € N.

h(13) = 2" mod 11 = 8 h(23) + 2% mod 11 = 8 h(33) + 2% mod 11 = 8

h(43) — 2% mod 11 = 8 h(53) — 2% mod 11 = 8 h(63) — 2% mod 11 = 8



