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Relation R on a set A is called an equivalence relation iff
R is reflexive, symmetric, and transitive.

Let us verify if = is an equivalence relation on N.

Reflexivity: any element a is equal to itself (a = a).
Symmetry: if a = b then also b = a.
Transitivity: if a = b and b = c, then also a = c.

Hence, = is an equivalence relation on N.

R ⊆ N× N = {(0, 0), (1, 1), (2, 2), . . .} .



Suppose that f and g are differentiable functions on R. Let
∼ be an equivalence relation defined by

f(x) ∼ g(x) ⇐⇒ ∂f
∂x =

∂g
∂x .

It is clear that ∼ is reflexive and symmetric.

To show transitivity, suppose f(x) ∼ g(x) and g(x) ∼ h(x).
The condition ∂f

∂x = ∂g
∂x is satisfied if f(x) and g(x) differ by a

constant.

f(x)− g(x) = c1 ,

g(x)− h(x) = c2 ,

f(x)− h(x) = f(x)− g(x) + g(x)− h(x) = c1 + c2 .

This implies f(x) ∼ h(x).



An equivalence relation gives rise to a partition via
equivalence classes.

Picture will be drawn on the whiteboard.

Such a partition is called a factor space, and the following
notation is used X

/
∼, where X is the underlying set, and

∼ is the equivalence relation.



A set with an equivalence relation on it is called a setoid.

A partition P on a set X is a collection of non-empty
subsets X1,X2, . . . such that are all disjoint, meaning that
Xi ∩ Xj = ∅ for i ̸= j, and

∪
k

Xk = X.

Let ∼ be an equivalence relation on a set X and let x ∈ X.
Then the equivalence class [x] ∈ X

/
∼ is

[x] = {y ∈ X : y ∼ x} .



Lemma 1
Given an equivalence relation ∼ on a set X, there exists at
least one non-empty equivalence class.

Proof.
Suppose there exists an equivalence relation ∼ on X, and
let x ∈ X. By reflexivity of ∼, x ∼ x, and so x ∈ [x]. Hence,
the equivalence class [x] is non-empty.



Theorem 1
Given an equivalence relation ∼ on a set X, the equivalence
classes of X form a partition of X.

Proof.
Suppose there exists an equivalence relation ∼ on X. We
need to show that ∼ forms a partition of X. By Lemma 1,∪
x∈X

[x] = X. Let x, y ∈ X. We will show that either

[x] ∩ [y] = ∅ or [x] = [y]. Suppose [x] ∩ [y] is non-empty.

z ∈ [x]∩[y] ̸= ∅ =⇒ z ∼ x∧ z ∼ y =⇒ x ∼ y =⇒ [x] ⊆ [y] .

Similarly, y ∼ x =⇒ [y] ⊆ [x], and so [x] = [y]. Therefore,
two equivalence classes are disjoint or exactly the same.



Theorem 2
If P = {Xi} is a partition of a set Xi, then there is an
equivalence relation on X with equivalence classes Xi.

Proof.
Let P = {Xi} be a partition of a set X. Let
a ∼ b ⇐⇒ a ∈ Xi ∧ b ∈ Xi. Clearly, ∼ is reflexive. To show
symmetry, observe that

x ∼ y =⇒ x ∈ Xi ∧ y ∈ Xi =⇒ y ∼ x .

For transitivity, observe that

x ∼ y ∧ y ∼ z =⇒ x ∈ Xi ∧ y ∈ Xi ∧ z ∈ Xi =⇒ x ∼ z .

Clearly, ∼ is an equivalence relation on X.



Corollary 1
Any two equivalence classes are either disjoint or equal.

Corollary 2
Every equivalence relation on a set corresponds to a
partition of this set.

Corollary 3
Any partition of a set corresponds to an equivalence relation
which gives rise to this partition.



In example,

Z
/
∼: a ∼ b ⇐⇒ a ≡ b (mod 2)

contains two equivalence classes [0] and [1] – even and odd
numbers.

[0] = {. . . ,−4,−2, 0, 2, 4, . . .} ,

[1] = {. . . ,−3,−1, 1, 3, 5, . . .} .

It can be seen that [0] ∩ [1] = ∅ and [0] ∪ [1] = Z.

Equivalence classes in Z
/
∼: a ∼ b ⇐⇒ a ≡ b (mod 3):

[0] = {. . . ,−3, 0, 3, 6, . . .} ,

[1] = {. . . ,−2, 1, 4, 7, . . .} ,

[2] = {. . . ,−1, 2, 5, 8, . . .} ,

form another partition of Z, since
[0] ∩ [1] = [1] ∩ [2] = [0] ∩ [2] = ∅ and [0] ∪ [1] ∪ [2] = Z.



The set of integers Z is an image of N× N, under ∼.

Z = N× N
/
∼ , (a, b) ∼ (c, d) ⇐⇒ a − b = c − d .

The set of rational numbers is an image of the set
Z× (Z \ {0}) under ∼.

Q = Z× (Z \ {0})
/
∼ , (a, b) ∼ (c, d) ⇐⇒ ac = bd .

The set Zn is an image of Z under the congruence relation.

Zn = {0, 1, 2, . . . , n − 1} = Z
/
≡: a ≡ b (mod n) ⇔ n|(a − b) .




