
IDK1531 Advanced C++ Course
C++ Statements

Aleksandr Lenin

Tallinn University of Technology

February 5th, 2019

Lenin, A. (TUT) IDK1531 2/5/2019 1 / 48

Basic Concepts

A C++ program is a set of text files that contain statements. They undergo
translation to become an executable program.

Words having special meaning in C++ are keywords. Others can be used as
identifiers.

Comments are ignored during translation.
// this is a single line comment
/∗

this is a multiline comment
∗/

Certain characters in the program have to be represented with escape
sequences.

Lenin, A. (TUT) IDK1531 2/5/2019 2 / 48

The entities of a C++ program are the following.

Objects – a region of storage that has size,alignment
requirement,storage duration,lifetime,type,value, and an optional
name.
References – an alias to an already existing object or function.
Functions – entities that associate a compound statement (a function body)
with a name and a list of parameters.
Types – restrict operations that are permitted for entities and provide
semantic meaning to them.
Templates – a C++ entity that defines a family of classes, functions, or
variables (C++14), an alias to a family of types (C++11), concept (C++20).
Namespaces – provide a method for preventing name conflicts in large
projects.

Entities are introduced by declarations which associate them with names
and define their properties.

Lenin, A. (TUT) IDK1531 2/5/2019 3 / 48

Statements

A C++ source file consists of statements.
Statements are parts of the C++ program that are executed sequentially.

Lenin, A. (TUT) IDK1531 2/5/2019 4 / 48

Statement Labels

Any statement can be labelled. There are 3 use cases for labeled statements.
1 Target for a goto unconditional jump

[attr] identifier : statement

2 Case label in a switch statement
[attr] case constexpr: statement

3 Default label in a switch statement
[attr] default: statement

Lenin, A. (TUT) IDK1531 2/5/2019 5 / 48

A statement may have multiple labels.

A label declared inside a function is in the scope everywhere in that
function, in all nested blocks, before and after its declaration.

Labels are ignored by unqualified name lookup. It means that a label can have
the same name as any other entity in a program.
int x = 3;
x: hello : // defined two labels for a single statement
std::cout << ”Hello ” << x << std::endl;
x−=1;
if (x==2) goto x;
else if (x==1) goto hello;

Output:
Hello 3
Hello 2
Hello 1

Lenin, A. (TUT) IDK1531 2/5/2019 6 / 48

Attributes

Common statement attributes provide a unified syntax for
implementation-defined language extensions, such as GNU, IBM, Microsoft.

Attributes unknown to an implementation are ignored without causing an
error.

If an attribute appears before the label, it applies to the label.

If an attribute appears after the label, but before the statement, it applies to
the statement.

Lenin, A. (TUT) IDK1531 2/5/2019 7 / 48

The most common standard attributes are given below.

[[noreturn]] – indicates that a function does not return

[[deprecated(”reason”)]] – indicates that the use of a name is deprecated for a
specific reason. The (”reason”) specification is optional. (C++14)

[[fallthrough]] – indicates that a fall through case labels is intended in switch
statement. (C++17)

[[nodiscard]] – makes the compiler to issue a warning if the return value is
discarded. (C++17)

[[maybe_unused]] – suppresses compiler warnings about unused entities.
(C++17)

Lenin, A. (TUT) IDK1531 2/5/2019 8 / 48

The C++ standard defines the following types of statements:
1 Expression statements
2 Compound statements
3 Selection statements
4 Iteration statements
5 Jump statements
6 Declaration statements
7 Try blocks

Lenin, A. (TUT) IDK1531 2/5/2019 9 / 48

Expression Statements

An expression statement is an expression followed by a semicolon
[attr] [expression];

Most statements in a C++ program are expression statements, such as
assignments or function calls.

An expression statement without an expression is called a null statement. It
is often used to provide an empty body to a for loop.

Example
x = x + 1;

Lenin, A. (TUT) IDK1531 2/5/2019 10 / 48

Compound Statements

Compound statements or blocks group a sequence of statements into a
single statement.
Compound statements may be used when one statement is expected, but
multiple statements need to be executed.

[attr] { [statement]... }

Example
{ // start of block

int a = 2; // declaration statement
a = a ∗ 5; // expression statement
std::cout << a; // expression statement

} // end of block, end of statement

{} // a valid empty statement

Lenin, A. (TUT) IDK1531 2/5/2019 11 / 48

Every compound statement introduces its own block scope. Variables
declared inside a block are destroyed at the closing brace in reverse order.

Example
{ // start of outer block

{ // start of inner block
int x; // declaration statement
std:: string s; // declaration statement
std::pair<int,int> point2D; // declaration statement

} // end of inner block, point2D is destroyed, then s, then x

int x; // name x is free to use
std:: string s; // name s is free to use

} // end of outer block

Lenin, A. (TUT) IDK1531 2/5/2019 12 / 48

The scope of a name introduced inside a block begins at the point of
declaration and ends at the end of the block.

Example
{

int x = 2;
x = x + 1; // x is inside scope

}

Example
{

x = x + 1; // expression is out of scope of x, x is used before it is declared
int x = 2;

}

Lenin, A. (TUT) IDK1531 2/5/2019 13 / 48

If a block contains a nested block declaration that re-declares some name
defined inside an outer block, then the entire scope of the nested declaration is
excluded from the scope of the outer declaration.

Example
{ // outer block

int x = 1; // scope of the ”outer” x begins
std::cout << x << std::endl; // prints 1
{ // inner block

int x = 5; // re−declaration of x, scope of the ”inner” x begins
// scope of the ”outer” x is discarded

x = x + 10; // expression inside the scope of ”inner” x
std::cout << x << std::endl; // prints 15

} // end of the inner block
x = x + 10; // expression insode the scope of ”outer” x
std::cout << x << std::endl; // prints 11

}

Lenin, A. (TUT) IDK1531 2/5/2019 14 / 48

Selection Statements

Selection statements execute a specific branch in the flow control,
depending on the result of evaluation of a condition.

Lenin, A. (TUT) IDK1531 2/5/2019 15 / 48

if statement conditionally executes another statement based on a run-time or
compile-time condition.

Lenin, A. (TUT) IDK1531 2/5/2019 16 / 48

[attr] if (condition) statement−true [else statement−false]

condition is one of

an expression implicitly convertible to type bool

a single non-array variable with a brace or equals initializer

statement-true and statement-false are any statements.

Example
int x = 2;
if (x < 0) x = 0; // does pretty much nothing

if (int x = 2) std::cout << x; // prints 2

if (int x=0) std::cout << x;
else std::cout << ”Else” << std::endl; // prints ”Else”

if (int x{3}) std::cout << x; // prints 3

if (int x{0}) std::cout << x;
else std::cout << ”Else” << std::endl; // prints ”Else”

Lenin, A. (TUT) IDK1531 2/5/2019 17 / 48

[attr] if [constexpr] ([init−statement] condition) statement−true [else statement−false]

init-statement is one of

an expression statement

a simple declaration

condition is one of

an expression implicitly convertible to type bool

a single non-array variable with a brace or equals initializer

If used with constexpr, the condition must be an expression implicitly
convertible to a constant expression of type bool.

Statement-true and statement-false are any statements.

Lenin, A. (TUT) IDK1531 2/5/2019 18 / 48

Example
int k = 10;
if (k−4; k > 5) std::cout << k; // prints 10 −− Why?
if (k−=4; k > 5) std::cout << k; // prints 5
if (int x = 2; x > 1) std::cout << x; // prints 2
if (int x = 2; x > 2) std::cout << x; // dead code
if (int x=2; int y=10) std::cout << x << ” ” << y; // prints 2 10
if (int x=2; int y{5}) std::cout << x << ” ” << y; // prints 2 5

Lenin, A. (TUT) IDK1531 2/5/2019 19 / 48

switch statement transfers control to one of the conditional statements based
on the value of a condition.

Lenin, A. (TUT) IDK1531 2/5/2019 20 / 48

[attr] switch ([init−statement] condition) statement
[attr] case constant−expression : statement
[attr] default: statement

condition any of

expression of integral or enumeration type

class type implicitly convertible to integral or enumeration type

declaration of a single non-array variable with a brace or equals initializer

init-statement one of

an expression statement

a declaration of one or more variables, optinally with an initializer

statement is any statement.

case: and default: labels are permitted.

break; statement has special meaning.

constant-expression of the same type as condition after implicit conversions.

Lenin, A. (TUT) IDK1531 2/5/2019 21 / 48

A switch statement body may have an arbitrary number of case: labels as long
as the constant−expressions are unique.

At most one default: label may be present.

If condition evaluates to the value of any of the constant−expressions, the control
is transfered to the matched label.

If no match was found, and the default: label is present, the control is
transfered to the statement labeled with the default: label.

The break; statement inside statement exits the switch statement.

Some compilers may issue a warning on fallthrough, unless attribute
[[fallthrough]] is prepended immediately before the case label, this tells the
compiler that the fallthrough is intentional.

Lenin, A. (TUT) IDK1531 2/5/2019 22 / 48

Example
switch (2)

std::cout << 2; // does nothing

switch (2) {
case 1: std::cout << 1;
case 2: std::cout << 2; // prints 2
case 3: std::cout << 3; // prints 3
default: std ::cout << ”default”; // prints ”default”

}

switch (2) {
case 1: std::cout << 1; break;
default: std ::cout << ”default”; // prints ”default”

}

using QTY = enum { ONE,TWO,THREE }; QTY qty = TWO;
switch (qty) {

case ONE: std::cout << 1; break;
case TWO: std::cout << 2; break; // prints 2
case THREE: std::cout << 3; break;
default: std ::cout << ”default”;

}

Lenin, A. (TUT) IDK1531 2/5/2019 23 / 48

Example
switch (int x = 2) {

case 1: std::cout << 1; break;
case 2: std::cout << 2; break; //prints 2

}

switch (int x{2}) {
case 1: std::cout << 1; break;
case 2: std::cout << 2; break; //prints 2

}

switch (int x = 2, y = 3; x∗y+10) {
case 12: std::cout << 12; break;
case 16: std::cout << 16; break; // prints 16
case 20: std::cout << 20; break;

}

Lenin, A. (TUT) IDK1531 2/5/2019 24 / 48

What is the problem with this code?

Example
switch (2) {

case 2:
int x = 2;
x = x + 3;
std::cout << x;
break;

case 3:
std::cout << 3;

}

Lenin, A. (TUT) IDK1531 2/5/2019 25 / 48

What is the problem with this code?

Example
switch (2) {

case 2:
int x = 2;
x = x + 3;
std::cout << x;
break;

case 3:
std::cout << 3;

}

Jumping to case 3: would enter the scope of x without initializing it.

Transfers of control are not permitted to enter the scope of any variable.

Lenin, A. (TUT) IDK1531 2/5/2019 25 / 48

Solution: the declaration of a variable has to be scoped in its compound
statement.

Example
switch (2) {

case 2:
{

int x = 2;
x = x + 3;
std::cout << x;
break;

} // scope of x ends here
case 3:

std::cout << 3;
}

Lenin, A. (TUT) IDK1531 2/5/2019 26 / 48

Repetition Statements

Iteration statements repeatedly execute a statement.

Lenin, A. (TUT) IDK1531 2/5/2019 27 / 48

while loop executes a statement repeatedly until the condition is implicitly
convertible to boolean false.

The condition evaluation happens before every iteration is made.

If the condition is an expression, it is evaluated before every iteration, and the
loop runs as long as the expression is evaluated to true. Once it is false, the
loop is exited.

If the condition is a declaration, the initializer is evaluated before every
iteration, and the loop runs as long as the declared variable is evaluated to
true. Once it is false, the loop is exited.

Lenin, A. (TUT) IDK1531 2/5/2019 28 / 48

[attr] while (condition) statement

condition is one of

any expression implicitly convertible to type bool

declaration of a single non-array variable with a brace or equals initializer

statement is any statement

Example
int x = 5;
while (x−− > 0)

std::cout << x; // prints 43210

The break; statement in the body of the loop terminates the loop.

The continue; statement in the body of the loop transfers control to the end of
the loop body.

Lenin, A. (TUT) IDK1531 2/5/2019 29 / 48

The scope of variables declared in statement is limited to the while loop, as if it
was a compound statement.

Example
int x = 5;
while (x−− > 0)

int y;
// y goes out of scope

Example
int x = 5;
while (x−− > 0) {

int y;
}
// y goes out of scope

Lenin, A. (TUT) IDK1531 2/5/2019 30 / 48

If a condition is a declaration, the declared variable is in the scope of the body
of while loop, and is destroyed and recreated in every iteration.

Example
std:: string s = ”Hello, World!”;
int i = 0;
while (char c = s[i++])

std::cout << c; // prints ”Hello, World!”

Lenin, A. (TUT) IDK1531 2/5/2019 31 / 48

do−while loop executes a statement repeatedly until the condition is implicitly
convertible to boolean false.

The condition evaluation happens after every iteration is made.

Lenin, A. (TUT) IDK1531 2/5/2019 32 / 48

[attr] do statement while (condition) ;

condition is any expression that is implicitly convertible to type bool.

statement is any statement.

Example
int x = 0;
do {

std::cout << x;
x++;

}
while (x < 5); // prints 01234

The break; statement in the body of the loop terminates the loop.

The continue; statement in the body of the loop transfers control to the end of
the loop body.

Lenin, A. (TUT) IDK1531 2/5/2019 33 / 48

for loop executes init-statement once, then repeatedly executes the
statement and iteration expression until the condition becomes
implicitly converible to boolean false.

Lenin, A. (TUT) IDK1531 2/5/2019 34 / 48

[attr] for ([init−statement] [condition] [iteration−expression]) statement

init-statement is one of

an expression statement

a simple declaration

condition is one of

an expression implicitly convertible to type bool. The expression is
evaluated before every iteration.

a declaration of a single non-array variable with brace or equals
initializer. The initializer is evaluated before every iteration.

iteration-expression is any expression which is executed after every
iteration of the loop.

statement is any statement.

Lenin, A. (TUT) IDK1531 2/5/2019 35 / 48

Names declared by the init−statement as well as names declared by condition are
in the scope of statement.

break; inside statement terminates the loop

continue; inside statement will execute iteration−expression.

Empty condition results in an infinite loop equivalent to while(1).

The scope of variables declared inside statement is limited to the body of the for
loop.

Lenin, A. (TUT) IDK1531 2/5/2019 36 / 48

Example
for(int x=0; x<10; x+=3) {

std::cout << x; // will print 0369
}
// x goes out of scope

Example
std:: string s = ”Hello, World!”;
for (int i=0; char c = s[i]; i++) {

std::cout << c; // prints ”Hello, World!”
}

Example
std:: string s = ”Hello, World!”;
for(int i=0; char c = s[i++];) { // note the empty iteration−expression!

std::cout << c; // prints ”Hello, World!”
}

Lenin, A. (TUT) IDK1531 2/5/2019 37 / 48

Range based for loop operates over a range of values executing one
iteration for every element in the range.

Lenin, A. (TUT) IDK1531 2/5/2019 38 / 48

[attr] for ([init−statement] range−declaration : range−expression) statement

init-statement (C++20) is any of

an expression statement

a simple declaration

range-declaration is a declaration of a named variable whose type is
equivalent to the type of the element represented by range-expression.

range-expression is any expression representing a range of elements – i.e.,
array, brace initialized list, iterable object.

statement is any statement.

Lenin, A. (TUT) IDK1531 2/5/2019 39 / 48

Example
std::vector<int> vec{1,2,3,4};
for (int i : vec)

std::cout << i; // prints 1234

for (int i : {1,2,3,4})
std::cout << i; // prints 1234

Example
std:: string s = ”Hello, World!”;
for(char c : s)

std::cout << c; // prints ”Hello, World!”

for(char c : std:: string(”Hello,World!”))
std::cout << c; // prints ”Hello, World!”

Lenin, A. (TUT) IDK1531 2/5/2019 40 / 48

Example
C++20:
for(std:: string s = ”Hello, World!”; char c : s)

std::cout << c; // prints ”Hello, World!”

The range-declaration may be a structured binding declaration

Example
std::map<int,std::string> dict = { {1,”Apples”}, {2,”Grapes”}, {3,”Oranges”} };
for (auto&& [key,value] : dict) // access by forwarding reference

std::cout << key << ” : ” << value << std::endl;

Output:
1 : Apples
2 : Grapes
3 : Oranges

Lenin, A. (TUT) IDK1531 2/5/2019 41 / 48

The scope of a name introduced in the

init−statement or the condition of a for loop

range−declaration of a range for loop

init−statements of if and while statements

condition of if , while and switch statements

begins at the point of declaration and ends at the end of the controlled
statement.
Example
std :: string s = ”Hello, World!”;
for (

int i=0; // i scope starts
char c = s[i]; // i is in scope, c scope starts
i++ // i is in scope, c is in scope

) {
int x = 2; // scope of x begins
std :: cout << i // i is in scope

<< ”: ”
<< c // c is in scope
<< std::endl;

} // scope of x, i , c ends here

Lenin, A. (TUT) IDK1531 2/5/2019 42 / 48

Jump Statements

break; terminates for, ranged for, do−while loop or switch statements.
continue skips the current iteration in for, ranged for, do−while loops and
proceeds to the next one. In for loops, the iteration−expression is executed before
proceeding with the next iteration.
return terminates the current function and returns an optional value to its
caller.
[attr] return statement

statement is any of

expression implicitly convertible to the return type of the enclosing
function

brace-enclosed list of initializers

goto statement performs an unconditional jump to a label.
[attr] goto label;

Lenin, A. (TUT) IDK1531 2/5/2019 43 / 48

Declaration Statements

Declaration statements introduce one or more identifiers into a block.

Lenin, A. (TUT) IDK1531 2/5/2019 44 / 48

Names introduced by declaration have point of declaration scope, which
begins at the point of declaration, which starts immediately after the name
declarator and before its initializer.

Example
int x = 5; // scope of ”outer” x begins
{

int x = x; // scope of ”inner” x begins before initializer =x
// x is initialized with indeterminate value, not value 5
// because ”outer” x is out of scope at the moment of initialization

}

Example
int x = 5; // scope of ”outer” x begins
{

int x[x] = {}; // scope of ”inner” x begins before initializer ={}
// In the declarator the ”outer” x is still in scope
// initializes an array of 5 integers

}

Lenin, A. (TUT) IDK1531 2/5/2019 45 / 48

Try Blocks

try blocks associate one or more exception handlers with a statement and
allow to catch exceptions thrown by it.
try compound−statement handler−sequence

Example
try {

throw std::runtime_error(”Fault”);
} catch (const std::runtime_error& e) {

std:: cerr << ”Exception: ” << e.what() << std::endl;
} catch (...) {

std:: cerr << ”Catch−all handler” << std::endl;
}

Lenin, A. (TUT) IDK1531 2/5/2019 46 / 48

A name declared in a try block is out of scope of the exception handlers.

The scope of a name declared in an exception handler is limited to the
exception handler and not to other exception handlers.

Example
try {

int k = 3;
// i and j are out of scope
// e1 and e2 are out of scope

} catch (const std::runtime_error& e1) {
int i ;
std::cout << e.what() << std::endl;
// k and j are out of scope
// e2 is out of scope

} catch (const std::ios_base::failure& e2) {
int j ;
std::cout << e2.what() << std::endl;
// k and i are out of scope
// e1 is out of scope

}

Lenin, A. (TUT) IDK1531 2/5/2019 47 / 48

Lenin, A. (TUT) IDK1531 2/5/2019 48 / 48

