Erinevus lehekülje "Example NL extractor 2" redaktsioonide vahel
Mine navigeerimisribale
Mine otsikasti
(Uus lehekülg: ' intxt="""Barack Obama went to China yesterday. He lives in Grand Hyatt Beijing. This is a superb hotel.""" nertable=[ [["Barack","Obama"],"Barack Obama","ner_noun","http://...') |
(Erinevus puudub)
|
Redaktsioon: 20. oktoober 2015, kell 15:37
intxt="""Barack Obama went to China yesterday. He lives in Grand Hyatt Beijing. This is a superb hotel."""
nertable=[
[["Barack","Obama"],"Barack Obama","ner_noun","http://en.wikipedia.org/wiki/Barack_Obama","person"], [["China"],"China","ner_noun","http://en.wikipedia.org/wiki/China","country"], [["Grand","Hyatt","Beijing"],"Grand Hyatt Beijing","ner_noun","https://en.wikipedia.org/wiki/Grand_Hyatt_Beijing","company"]
]
postable=[
[["went"],"go","verb","http://conceptnet5.media.mit.edu/data/5.3/c/en/go","past"], [["to"],"to","preposition","http://conceptnet5.media.mit.edu/data/5.3/c/en/to",None], [["yesterday"],"yesterday","adverb","http://conceptnet5.media.mit.edu/data/5.3/c/en/yesterday",None], [["he"],"he","pronoun","http://conceptnet5.media.mit.edu/data/5.3/c/en/this",None], [["lives"],"live","verb","http://conceptnet5.media.mit.edu/web/c/en/live",None], [["in"],"in","preposition","http://conceptnet5.media.mit.edu/web/c/en/in",None], [["this"],"this","pronoun","http://conceptnet5.media.mit.edu/web/c/en/this",None], [["is"],"be","verb","http://conceptnet5.media.mit.edu/web/c/en/type/v/identify_as_belonging_to_a_certain_type",None], [["superb"],"superb","adjective","http://conceptnet5.media.mit.edu/web/c/en/superb",None], [["hotel"],"hotel","noun","http://conceptnet5.media.mit.edu/web/c/en/hotel",None]
]
- [barack,action1,china] "to china", "went ... yesterday"
- [action1,activity,moveto]
- [action1,time,past]
- [he,action2, grandhyattbeijing]
- [action2,activity,live_in]
- [action2,time,current]
- TODO:
- sentencetable=[
- [["noun","verb","noun"],0,1,2]
def main(txt):
splitted=split_text(txt)
print("splitted:")
print(splitted)
nerred=ner_text(splitted)
print("nerred:")
print(nerred)
posed=pos_text(nerred)
print("posed:")
print(posed)
pretty_print(posed)
rdf=simple_rdf(posed)
print("rdf:")
print(rdf)
pretty_print(rdf)
def ner_text(slst):
rlst=[]
for sent in slst:
srlst=[]
i=0
while i<len(sent):
tmp=sent_has_name_at(sent,i)
if tmp:
srlst.append(tmp[0])
i=tmp[1]
else:
srlst.append(sent[i])
i+=1
rlst.append(srlst)
return rlst
def sent_has_name_at(sent,i):
if not sent: return 0
if i>=len(sent): return 0
for known in nertable:
phrase=known[0]
j=0
while j<len(phrase):
if i+j>=len(sent): break
if sent[i+j]!=phrase[j]:
break
j+=1
if j==len(phrase):
res=[known,i+len(phrase)-1]
return res
def pos_text(slst):
rlst=[]
for sent in slst:
srlst=[]
i=0
while i<len(sent):
if type(sent[i])==type([0]):
srlst.append(sent[i])
i+=1
continue
tmp=sent_has_pos_at(sent,i)
if tmp:
srlst.append(tmp[0])
i=tmp[1]
else:
srlst.append(sent[i])
i+=1
rlst.append(srlst)
return rlst
def sent_has_pos_at(sent,i):
if not sent: return 0
if i>=len(sent): return 0
for known in postable:
phrase=known[0]
j=0
while j<len(phrase):
if i+j>=len(sent): break
if sent[i+j]!=phrase[j] and sent[i+j].lower()!=phrase[j]:
break
j+=1
if j==len(phrase):
res=[known,i+len(phrase)-1]
return res
def split_text(txt):
sentlst=txt.replace(","," ").split(".")
wlst=[]
for s in sentlst:
if not s: continue
sp=s.replace("."," ").replace("\n"," ").split(" ")
tmp=[]
for w in sp:
w1=w.strip()
if w1: tmp.append(w1)
wlst.append(tmp)
return wlst
def pretty_print(sentlst):
for sent in sentlst:
print("sentence: ")
if type(sent)==type([1]):
for phrase in sent:
print(" "+str(phrase))
def simple_rdf(sentlst):
done=[] prevsent=None for sent in sentlst: ns=simple_rdf_sentence(sent,prevsent) done.append(ns) prevsent=sent return done
def simple_rdf_sentence(sent,prevsent):
verbs=[]
nouns=[]
for phrase in sent:
if type(phrase)!=type([1]): continue
if phrase[2]=="verb":
verbs.append(phrase[3])
elif phrase[2] in ["ner_noun","noun"]:
nouns.append(phrase[3])
elif phrase[2] in ["pronoun"]:
candidates=get_candidate_nouns(prevsent)
if candidates:
nouns.append(candidates)
if verbs and len(nouns)>1:
rdf=[nouns[0],verbs[0],nouns[1]]
else:
rdf=None
return rdf
def get_candidate_nouns(sent):
lst=[]
for phrase in sent:
if phrase[2] in ["ner_noun","noun"]:
lst.append(phrase[3])
return lst
main(intxt)