Lecture 6

Module I: Model Checking

Topic: Model checking timed transition

systems: timed automata

J.Vain 10.03.2022

Slides by **Brian Nielsen** (Aalborg Univ. Denmark)

Finite State Machine (Mealy)

condition		effect	
current state	input	output	next state
q_1	coin	-	q_2
q_2	coin	-	q_3
q_3	cof-but	cof	q_1
q_3	tea-but	tea	q_1

Sample run:

$$q_1 \xrightarrow{\text{coin/-}} q_2 \xrightarrow{\text{coin/-}} q_3 \xrightarrow{\text{cof-but/cof}} q_1 \xrightarrow{\text{coin/-}}$$

$$q_2 \xrightarrow{\text{coin/-}} q_3 \xrightarrow{\text{cof-but/cof}} q_1$$

Adding Time

FSM ↓
Timed Automata

Designing Dumb Light Control

Reguirement: if press is issued twice quickly then the light will get brighter; otherwise the light is turned off.

Solution 1:

Dumb Light Control

Solution 2: Add real-valued clock x to model the timing requirement $quickly \equiv x \leq 3$

States: (location, x=v) where $v \in R$

Transitions:
(Off , x=0)

States: (location, x=v) where $v \in R$

```
Transitions:

( Off, x=0 )

delay 4.32 \rightarrow ( Off, x=4.32 )
```


States: (location, x=v) where $v \in R$

```
Transitions:

(Off, x=0)

delay 4.32 \rightarrow (Off, x=4.32)

press? \rightarrow (Light, x=0)
```



```
States: (location, x=v) where v \in R
```

```
Transitions:

(Off, x=0)

delay 4.32 \rightarrow (Off, x=4.32)

press? \rightarrow (Light, x=0)

delay 2.51 \rightarrow (Light, x=2.51)
```



```
States: (location, x=v) where v \in R
```

```
Transitions:

( Off , x=0 )

delay 4.32  → ( Off , x=4.32 )

press?  → ( Light , x=0 )

delay 2.51  → ( Light , x=2.51 )

press?  → ( Bright , x=2.51 )
```

Intelligent Light Control

Reguirement: : automatically switch light off after 100 time units

Upper time bound is specified using invariants

Intelligent Light Control

Using Invariants x := 0x = 100x := 0press? press? Off Light $x \le 3$ x := 0press? press? x := 0x = 100x>3 x := 0

x := 0

Intelligent Light Control

If requirements include uncertainty:

Automatically switch light off between 90-100 time units after switching on.

Light Controller | User

Networks of Timed Automata (a'la CCS)

Two-way synchronization on *complementary* actions.

Closed Systems!

Example transitions

(11, m1,...,
$$x=2$$
, $y=3.5$,....) tau (12,m2,..., $x=0$, $y=3.5$,)

(11, m1,..., $x=2$, $y=3.5$,....)

If a URGENT CHANNEL

How to model Timing Uncertainty?

- Unpredictable or variable timing
 - response time,
 - computation time
 - transmission time etc:

Example:

Light level must be adjusted between 5 and 10 time units

Comitted Locations

- Locations marked C
 - No delay in committed location.
 - No interleaving with parallel transitions
- Handy to model atomic sequences
- The use of committed locations <u>reduces</u> the number of states in a model, <u>and</u> allows for more space and time efficient analysis.
- Example:

Sequence s0 to s5 is executed atomically (no interleavings with concurrent actions)

Urgent Channels and Locations

- Locations marked U
 - No delay like in committed location.
 - But Interleaving permitted
- Channels declared "urgent chan"
 - Time doesn't elapse when a synchronization is possible on a pair of urgent channels
 - Interleaving is allowed

Broadcast channel

- Declaration: broadcast chan ch;
- Sending process executes output action e.g. ch!
- Every automaton that listens to moves on synchronously ie. every automaton with enabled transition that is labeled with input action ch? moves on one step
- Provides non-blocking synchronization: even if zero listeners are enabled, sender process can progress anyway

Other Uppaal features

- Bounded variable domains
 - int [1..4] a;
- C-like data-structures and user defined functions in declaration section
 - structs, arrays, and type definitions
 - typedef int [0,n] t_id
- non-deterministic assignment:
 - select a:T // select a random value from T
- forall, exists in expressions
- Scalar sets (for giving unique ID's)
- Process and channel priorities

Semantics: Timed traces


```
(L0, x=0,y=0)

\Rightarrow_{\epsilon(1.4)}

(L0, x=1.4,y=1.4)

\Rightarrow_{a}

(L0, x=1.4,y=0)

\Rightarrow_{\epsilon(1.6)}

(L0, x=3.0,y=1.6)

\Rightarrow_{a}

(L0,x=3.0,y=0)
```

From explicit clock values to zones (from infinite to finite)

Explicit state (n, x=3.2, y=2.5)

Symbolic state (set)

(n,
$$1 \le x \le 4$$
, $1 \le y \le 3$)

Symbolic Transitions

Assume clock values when reaching location n

Symbolic state exploration

Difference Bound Matrix

$x_0 - x_0 < = 0$	$x_0 - x_1 < = -2$	$x_0 - x_2 < = -1$
$x_1 - x_0 < = 6$	$x_1 - x_1 < = 0$	$ x_1-x_2 < =3$
$x_2 - x_0 < = 5$	$x_2 - x_1 < = 1$	$x_2 - x_2 < = 0$

$$x_i - x_j < = c_{ij}$$

Forward Reachability Algorithm

Init -> Final ?

Forward Reachability Algorithm

Init -> Final ?


```
INITIAL Passed := \emptyset;
             Waiting := \{(n_0, Z_0)\}
REPEAT
  pick (n,Z) in Waiting
  if (n,Z) = Final return true
  for all (n,Z)\rightarrow (n',Z'):
     if for some (n',Z'') Z' \subseteq Z'' continue
     else add (n',Z') to Waiting
     move (n,Z) to Passed
UNTIL Waiting = \emptyset
return false
```

Forward Reachability Algorithm

Init -> Final ?


```
INITIAL Passed := \emptyset;
            Waiting := \{(n_0, Z_0)\}
REPEAT
  pick (n,Z) in Waiting
  if (n,Z) = Final return true
  for all (n,Z)\rightarrow (n',Z'):
     if for some (n',Z'') Z' \subseteq Z'' continue
     else add (n',Z') to Waiting
     move (n,Z) to Passed
UNTIL Waiting = \emptyset
return false
```

Init -> Final ?


```
INITIAL Passed := \emptyset;
            Waiting := \{(n_0, Z_0)\}
REPEAT
  pick (n,Z) in Waiting
  if (n,Z) = Final return true
  for all (n,Z)\rightarrow (n',Z'):
     if for some (n',Z'') Z' \subseteq Z'' continue
     else add (n',Z') to Waiting
     move (n,Z) to Passed
UNTIL Waiting = \emptyset
return false
```

Init -> Final ?


```
INITIAL Passed := \emptyset;
             Waiting := \{(n_0, Z_0)\}
REPEAT
  pick (n,Z) in Waiting
  if (n,Z) = Final return true
  for all (n,Z)\rightarrow (n',Z'):
     if for some (n',Z'') Z' \subseteq Z'' continue
     else add (n',Z') to Waiting
     move (n,Z) to Passed
UNTIL Waiting = \emptyset
return false
```

Init -> Final ?


```
INITIAL Passed := \emptyset;
            Waiting := \{(n_0, Z_0)\}
REPEAT
  pick (n,Z) in Waiting
  if (n,Z) = Final return true
  for all (n,Z)\rightarrow (n',Z'):
     if for some (n',Z') Z' \subseteq Z'' continue
     else add (n',Z') to Waiting
     move (n,Z) to Passed
UNTIL Waiting = \emptyset
return false
```

Init -> Final ?


```
INITIAL Passed := \emptyset;
             Waiting := \{(n_0, Z_0)\}
REPEAT
  pick (n,Z) in Waiting
  if (n,Z) = Final return true
  for all (n,Z)\rightarrow (n',Z'):
     if for some (n',Z'') Z' \subseteq Z'' continue
     else add (n',Z') to Waiting
     move (n,Z) to Passed
UNTIL Waiting = \emptyset
return false
```

Specification (Query) Language TCTL

UPPAAL Property Specification Language

```
A[] p
A<> p
inevitable
E<> p
E[] p
potentially always
P --> q
leads-to
```

```
process location data guards clock guards
p::= a.l | gd | gc | p and p |
    p or p | not p | p imply p |
    ( p ) | deadlock (only for A[], E<>)
```

Example:

A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)

Uppaal "Computation Tree Logic"

- Validation Properties
 - Possibly: E<> *p*
- Safety Properties
 - Invariant: A[] p
 - Possibly Inv.: E[] P
- Liveness Properties
 - Eventually: A<> p
 - Leads_to: *p* --> *p*
- Bounded Liveness
 - Leads to within: $p \rightarrow q$

The expressions p and q

- must be type safe, side effect free, and evaluate to a boolean.
- only references to integer variables, constants, clocks, and locations are allowed (and arrays of these).

- Validation Properties
 - Possibly: $E <> \varphi$
- Safety Properties
 - Invariant: A[] φ
 - Pos. Inv.: $E[] \varphi$
- Liveness Properties
 - Eventually: $A <> \varphi$
 - Leadsto: $\varphi \rightarrow \psi$
- Bounded Liveness
 - Leads to within: $\phi \dashrightarrow \leq_{\mathsf{t}} \psi$

- Validation Properties
 - Possibly: E <> p
- Safety Properties
 - Invariant: $A[] \varphi$
 - Pos. Inv.: $E[] \varphi$
- Liveness Properties
 - Eventually: $A <> \varphi$
 - Leadsto: $\varphi --> \psi$
- Bounded Liveness
 - Leads to within: $\phi -->_{\leq t} \psi$

- Validation Properties
 - Possibly: $E <> \varphi$
- Safety Properties
 - Invariant: A[] φ
 - Pos. Inv.: $E[] \varphi$
- Liveness Properties
 - Eventually: A<> φ
 - Leads to: $\varphi \rightarrow \psi$
- Bounded Liveness
 - Leads to within: $\phi \dashrightarrow {}_{\leq {}^{\mathsf{t}}} \psi$

- Validation Properties
 - Possibly: E<> φ
- Safety Properties
 - Invariant: A[] φ
 - Pos. Inv.: $E[] \varphi$
- Liveness Properties
 - Eventually: A<> φ
 - Leadsto: $\varphi \dashrightarrow \psi$
- Bounded Liveness
 - Leads to within: $\varphi \longrightarrow_{\leq t} \psi$

Jug Example

- Safety: Never overflow.
 - A[] forall(i:id_t) level[i] <= capa[i]
- Validation/Reachability: How to get 1 unit.
 - E<> exists(i:id_t) level[i] == 1

Train-Gate Crossing Example

- Safety: One train on crossing at a time.
 - A[] forall (i : id_t) forall (j : id_t)
 Train(i).Cross && Train(j).Cross imply i == j
- Liveness: Approaching trains eventually arrive on crossing.
 - Train(0).Appr --> Train(0).Cross
 - Train(1).Appr --> Train(1).Cross
 - ...
- No deadlock.
 - A[] not deadlock