Lecture 6

Module I: Model Checking

Topic: Model checking timed transition
systems: timed automata

J.Vain
10.03.2022

Slides by Brian Nielsen
(Aalborg Univ. Denmark)

Finite State Machine (Mea

@

cof-but / cof

Inputs = {cof-but, tea-but, coin}

Outputs = {cof,tea}
States: {ql,Clz,Clg}
Initial state = q,
Transitions= {

(q1; COin/) qZ)r
(qz; COin/) q3)r

(g5, cof-but, cof, q,),
(g5, tea-but, tea, q,)
}

Y)

tea-but / tea

condition effect
current | input output next
state state

d; coin | _ 4,

4> coin | _ ds

gs| cof-but | cof o

gs | tea-but|tea d,

Sample run:

coin/ - coin/- cof-but / cof coin/ -
> 0, > (3 > >

: cof-but / cof
qz coin/ =, q3 :ql

Adding Time

FSM

v

Timed Automata

Designing Dumb Light Control

Reguirement: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

Solution 1:

press?

?

Dumb Light Control

Solution 2: Add real-valued clock x to model
the timing requirement guickly = x < 3

press?

X:=0

X>3

10

Timed Automata

Reset

/ Synchronizing
action

/X>3

press?

X<3

\

clock

x: real-valued

Guard

Conjunctions of
X~n

11

Timed Automata

Reset Synchronizing

\ press?/ action

/L'_h\t press?

Ig X<3

N

X>3 Guard

Conjunctions of
x: real-valued X~N

clock

12

Timed Automata

Reset \

Synchronizing
action

x: real-valued
clock

Guard
Conjunctions of
X~n

13

Timed Automata

Reset \

Synchronizing
action

x: real-valued
clock

Guard
Conjunctions of
X~n

14

Timed Automata

Reset \

Synchronizing
action

x: real-valued
clock

Guard
Conjunctions of
X~n

15

Intelligent Light Control

Reguirement: : automatically switch light off after 100 time units

x:=0 x=100

Upper time bound is specified using invariants

16

Intelligent Light Control

Using Invariants
x:=0 x=100

Invariants
ensures
Drogress

Intelligent Light Control

If requirements include uncertainty:
Automatically switch light off between 90-100 time units after switching on.

x:=0 x>=90

Location
Invariant

SS?

18

Light Controller || User

X:=0

Synchronization

x=100

19

Networks of Timed Automata

(a’la CCS)
/1 ml1
x>=2 y<=4 Two-way synchronizati_on
on complementary actions.
al a? EEEEEEEEEnnnBl

Closed Systems!

If a URGENT CHANNEL 20

How to model Timing Uncertainty?

* Unpredictable or variable timing

* response time,
* computation time
* transmission time etc:

Example:
Light level must be adjusted
between 5 and 10 time units

Initially T=0

®T-=::‘IO

T=>=5
setLightLevell

©

21

Comitted Locations

* Locations marked C
* No delay in committed location.
* No interleaving with parallel transitions

* Handy to model atomic sequences

* The use of committed locations reduces the
number of states in a model, and allows for
more space and time efficient analysis.

accountA:=a:

* Example:

Sequence s0 to s5 is executed atomically (ho ~ accountB:=b

interleavings with concurrent actions)) 55

26

Urgent Channels and Locations

e Locations marked U
* No delay like in committed location.
e But Interleaving permitted

* Channels declared “urgent chan”

* Time doesn’t elapse when a synchronization is possible on a pair
of urgent channels

* Interleaving is allowed

Broadcast channel

* Declaration: broadcast chan ch;
* Sending process executes output action e.g. ch!

* Every automaton that listens to moves on synchronously

ie. every automaton with enabled transition that is labeled with input
action ch? moves on one step

* Provides non-blocking synchronization: even if zero listeners are
enabled, sender process can progress anyway

Other Uppaal features

 Bounded variable domains
e int [1..4] a;

e C-like data-structures and user defined functions in declaration section
* structs, arrays, and type definitions
* typedef int [0,n] t 1id

* non-deterministic assignment:
e select a:T // select a random value from T

* forall, exists in expressions
 Scalar sets (for giving unique ID’s)

* Process and channel priorities

Semantics: Timed traces
yf_

| ~ | P4 R/ " a
a b | | I N
}"“:=2 y<="7 X

(LO, x=0,y=0)
<=2 x>=4

¢ ! ' 98(1.4)

(LOI X=1-4,y=1.4)
9E:]

L1 (LO, x=1.4,y=0)

98(1.6)
Reachable? (LOI X=3.O,y=1.6)
2 N
(LO,x=3.0,y=0)| .,

From explicit clock values to zones
(from infinite to finite)

[

Explicit state Symbolic state (set)
(n, x=3.2, y=2.5) (n,1<x<4,1<y<3)

Zone:
conjunction of
y Yy clock constraints
of form:
X-y<=constl,
o X<=const2,
- - X>=const3

Symbolic Transitions

N
/

X>3

[

Assume clock values when reaching location n

1<x<4 1<x 1<y
y l=ys=3 Y | 2 < xy<3
In location n delay to |
X X
Y / y e 3<x,1<y
C/ Guard conjoins to / 2<XYy<=3
3 X X
y —
Update projects to 3<xy=0
X

Thus (n, 1<x<4,1<y<3) =%(m, 3 <x, y=0)

32

Symbolic state exploration

y.=0 0 x:=0 v !

y<=2 X<=2

y<=2, Xx>=4 ®

L1

Reachable?

33

Symbolic Exploration

x.=0
X<=2
y<=2, x>=4
0

Reachable?

34

Symbolic Exploration

=0 =0
y L0 .

y<= X<=2

y<=2, x>=4

Lp

Reachable?

35

Symbolic Exploration

=0 =0
y L0 .
y<= X<=2
y<=2, x>=4
0

Reachable?

36

Symbolic Exploration

x.=0
X<=2
y<=2, x>=4
10

Reachable?

37

Symbolic Exploration

=0 =0
y L0 .
y<= X<=2
y<=2, x>=4
0

Reachable?

38

Symbolic Exploration

x.=0
X<=2
y<=2, x>=4
10

Reachable?

39

Symbolic Exploration

x:=0 y

X<=2
y<=2, x>=4
X
Q@

Reachable?

40

Symbolic Exploration

y<=2 X<=2

y<=2, X>=

L1

41

Difference Bound Matrix

XoXo<=0 [Xyg=X1<=-2 | X;-X,<=-1
Xl'X0<=6 Xl'X1<=O Xl_X2<=3
< /one

Xi-Xj < =C|]

42

Forward Reachability Algorithm

Init -> Final ?

INITIAL Passed := @;
/ PW B Waiting := {(ny,Zy)}

/Waiting \ Final

REPEAT

pick (n,Z) in Waiting

if (n,Z) = Final return true

for all (n,2)—(n’Z"):
if for some (n’,Z") in Passed Z'c Z"
then continue
else add (n’,Z") to Waiting
move (n,Z) to Passed

UNTIL Waiting = @

@Init Passed / return false

45

Forward Reachability Algorithm

Init -> Final ?

-

/Waiting

Co®o O
o

~

0

Final

INITIAL Passed := @;
Waiting := {(ng,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n’,Z’):
if for some (n’,Z") Z'c Z" continue
else add (n’,Z") to Waiting
move (n,Z) to Passed

UNTIL Waiting = @
return false

46

Forward Reachability Algorithm

Init -> Final ?

-

2.0\

/Waiting

- \
Ve
’

INITIAL Passed := @;
Waiting := {(ng,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n’,Z’):
if for some (n’,Z") Z'c Z" continue
else add (n’,Z") to Waiting
move (n,Z) to Passed

UNTIL Waiting = @
return false

47

Forward Reachability Algorithm

Init -> Final ?

-

/Waiting

~

0

Final

INITIAL Passed := @;
Waiting := {(ng,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n’,Z’):
if for some (n,Z2") Z'c Z"” continue
else add (n’,Z") to Waiting
move (n,Z) to Passed

UNTIL Waiting = @
return false

48

Forward Reachability Algorithm

Init -> Final ?

Final

INITIAL Passed := @;
Waiting := {(ng,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n’,Z’):
if for some (n,Z2") Z'c Z"” continue
else add (n’,Z") to Waiting
move (n,Z) to Passed

UNTIL Waiting = @
return false

49

Init -> Final ?

Final

Forward Reachability Algorithm

INITIAL Passed := @;
Waiting := {(ng,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n’,Z’):
if for some (n’,Z2") Z'< Z"” continue
else add (n’,Z") to Waiting
move (n,Z) to Passed

UNTIL Waiting = @
return false

50

Init -> Final ?

Final

Forward Reachability Algorithm

INITIAL Passed := @;
Waiting := {(ng,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n’,Z’):
if for some (n,Z2") Z'c Z"” continue
else add (n’,Z") to Waiting
move (n,Z) to Passed

UNTIL Waiting = @
return false

51

Specification (Query) Language
TCTL

UPPAAL Property Specification Language

‘Al p always E<> p Possible
*A<> p inevitable *E[] p potentially always

*P -->q leads-to

X//

p::= a.l | gd gc p and p |

p or p | not p | p imply p |
(p) | deadlock(only for A[],E<>)

Example:
A[] (mcl.finished and mc2.finished) imply (accountA+accountB==200)

|I(

Uppaal “Computation Tree Logic”

A always
E<> p Possible P 4

<

EL] P potentially always 2<> p Inevitable p -—> g [eads-to

f? |

5
o

Logical Specifications

* Validation Properties
e Possibly: E<>p

 Safety Properties
* |nvariant: All p
e Possibly Inv.: E[] P

* Liveness Properties
* Eventually: A<>p
* Leads_to: p-->p

 Bounded Liveness
* Leads to within: p-->_, g

56

Logical Specifications

* Validation Properties
* Possibly: E<> ¢

SRS

E{}@

57

Logical Specifications

 Safety Properties
* Invariant:
* Pos. Inv.:

All ¢
El] ¢

@ -->

IN

Allyp

El]lp

AN

S

©

58

Logical Specifications

@
A<>p
@
@
* Liveness Properties
* Eventually: A<> @
 Leads to: Q-->

@ -->

IN

Logical Specifications

* Bounded Liveness
* Leads to within: ¢ --> _,

60

Jug Example

 Safety: Never overflow.
» A[] forall(i:id_t) level[i] <= capali]

* Validation/Reachability: How to get 1 unit.
* E<> exists(i:id_t) level[i] ==

61

Train-Gate Crossing Example

 Safety: One train on crossing at a time.
e A[] forall (i : id_t) forall (j : id_t)
Train(i).Cross && Train(j).Cross imply i ==j
* Liveness: Approaching trains eventually arrive on crossing.
* Train(0).Appr --> Train(0).Cross
* Train(1).Appr --> Train(1).Cross

* No deadlock.
e A[] not deadlock

62

