Machine Learning, Lecture 3: K-means \& Gaussians

S. Nõmm
${ }^{1}$ Department of Computer Science, Tallinn University of Technology

K-means

The goal is to cluster the data into K clusters, whereas no labeled data are given.

- Case of unsupervised learning.
- K is the hyperparameter.

K-means clustering

- Initialization: Generate randomly K points, called Centroids. Each centroid represent one of the K classes. repeat
- Associate each point with the cluster represented by the closest centroid. $z_{i}=\arg \min _{k}\left\|x_{i}-\mu_{k}\right\|_{2}^{2} . z_{i}$ - is the cluster label.
- Update centroids for each cluster as

$$
\mu_{k}=\frac{1}{N_{k}} \sum_{i: z_{i}=k} x_{i}
$$

until converged;

Example 1 of 4

iteration 0, loglik -Inf

iteration 3, loglik -465.8923

iteration 2, loglik -563.6648

iteration 3, loglik -558.1660

Example 2 of 4

iteration 4, loglik -556.5970

iteration 6, loglik -458.7438

iteration 5, loglik -537.0269

iteration 7, loglik -428.9944

Example 3 of 4

iteration 8, loglik -399.1540

iteration 10, loglik -390.3201

iteration 9, loglik -392.5921

iteration 11, loglik -389.8398

Example 4 of 4, Convergence

K-means algorithm

- K - means algorithm is guaranteed to converge.
- Clustering depend on the particular initialization. Different runs may produce different clusterings. Solution is not global.
- Centroids are the parameters of the model.
- K - means algorithm allows to discover latent structure of the data

K-means algorithm

- K - means algorithm is guaranteed to converge.
- Clustering depend on the particular initialization. Different runs may produce different clusterings. Solution is not global.
- Centroids are the parameters of the model.
- K - means algorithm allows to discover latent structure of the data.
- K - means algorithm works well when the data consists of well-separated Gaussians.
- K - means algorithm performs poorly on the data which does not resemble Gausssian at all.
- Number of classes K should be known or guessed.

K-means implementation in MATLAB environment

[idx, C, sumd, D] = kmeans (X,k,Name, Value)

- idx - returns cluster indexes for each point.
- C - returns centroids.
- sumd - for each cluster returns the sum of the distances from points to corresponding centroid.
- D - returns distance from each point to every centroid.
- X - initial data to cluster.
- k - number of clusters.
- Name refers to the name of the parameter name to be set.
'Distance'
- Value is the value of the parameter to be set.
'cityblock'

Gaussian

- One-dimensional
- Do you remember a bell shaped curve?
- Parameterized by mean μ and variance σ^{2}
- Probability density function (pdf):

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{(x-\mu)^{2}}{2 \sigma^{2}}
$$

- D-dimensional: Parameterized by mean vector $\boldsymbol{\mu}$ and the covariance matrix Σ.

$$
p(\boldsymbol{x} \mid \boldsymbol{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}}|\Sigma|^{1 / 2} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right]
$$

- Derive for the 2- and 3- dimensional cases.

Fitting a Gaussian

Let us suppose, that a sample of n points $\boldsymbol{X}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ were independently drawn from some Gaussian.
The goal is to find the mean and the variance of the Gaussian.
(Fitting the Gaussian model to the data.)

- Sample mean is used as the estimate of the mean for the Gaussian

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- sample variance is used as the estimate of the variance of the Gaussian

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
$$

Why such estimates are correct?

Probability versus Likelihood

- Data is fixed: How likely certain set of parameters will result given data set.
- Parameters are fixed: What is the probability of drawing given data set with the given set of parameters.

Maximal likelihood estimate

Sometimes referred as maximal likelihood principle. More formally

$$
\mathcal{L}(\theta \mid x)=P(x \mid \theta)
$$

- The goal is to find parameters that maximize the likelihood.
- In many cases natural logarithm of the likelihood function is more easy to deal with. Introduce log-likelihood.

Sufficient statistics

Definition

A statistic $T(X)$ is sufficient for the parameter θ if the conditional probability distribution of the data X, given the statistic $T(x)$ does not depend on the parameter θ

$$
P(X=x \mid T(X)=t, \theta)=P(X=x \mid T(X)=t)
$$

- A statistic is sufficient for a family of probability distributions if the sample from which it was calculated gives no additional information.
- In other words. The value of the sufficient statistic (for the parameter) contains all the necessary information to calculate estimate of the parameter.

Example

Consider one dimensional Gaussian: Let us suppose that data points in the sample are drawn independently then the probability of data is:

$$
\begin{aligned}
& P\left(\boldsymbol{X} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \mu, \sigma^{2}\right) \\
&=\ldots=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{n}{2}}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}
\end{aligned}
$$

As a next step: compute log - likelihood

$$
\log P\left(\boldsymbol{X} \mid \mu, \sigma^{2}\right)=-\frac{n}{2} \log 2 \pi-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Example

$$
\log P\left(\boldsymbol{X} \mid \mu, \sigma^{2}\right)=-\frac{n}{2} \log 2 \pi-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

The last term

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i-1}^{n} x_{i}^{2}-2 \mu \sum_{i=1}^{n} x_{i}+n \mu^{2}
$$

Likelihood depends on the sample only through $\sum_{i-1}^{n} x_{i}^{2}$ and $\sum_{i=1}^{n} x_{i}$ which are sufficient statistics in this case.

Estimate of the mean μ

Find the partial derivative with respect to μ :

$$
\frac{\partial \log P\left(\boldsymbol{X} \mid \mu \sigma^{2}\right)}{\partial \mu}=\frac{1}{\sigma^{2}}\left(\sum_{i=1}^{n} x_{i}-n \mu\right)
$$

Solve the following equation with respect to μ.

$$
\frac{1}{\sigma^{2}}\left(\sum_{i=1}^{n} x_{i}-n \mu\right)=0 \Rightarrow \hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Estimate of the variance σ^{2}

Find the partial derivative with respect to σ^{2} :

$$
\frac{\partial P\left(\boldsymbol{X} \mid \mu, \sigma^{2}\right)}{\partial \sigma^{2}}=\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-\frac{n}{2 \sigma^{2}}
$$

Solve the following equation with respect to σ^{2}

$$
\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-\frac{n}{2 \sigma^{2}}=0 \Rightarrow \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Multivariate case

- Mean estimate

$$
\hat{\boldsymbol{\mu}}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Sample covariance

$$
\hat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\hat{\boldsymbol{\mu}}\right)\left(\boldsymbol{x}_{i}-\hat{\boldsymbol{\mu}}\right)^{T}
$$

