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K-means

The goal is to cluster the data into K clusters, whereas no labeled
data are given.

I Case of unsupervised learning.

I K is the hyperparameter.



K-means clustering

I Initialization: Generate randomly K points, called Centroids.
Each centroid represent one of the K classes.
repeat

I Associate each point with the cluster represented by the
closest centroid. zi = arg mink || xi − µk ||22. zi - is the cluster
label.

I Update centroids for each cluster as

µk =
1

Nk

∑
i:zi=k

xi

until converged;



Example 1 of 4
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Example 2 of 4
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iteration 4, loglik −556.5970
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Example 3 of 4
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Example 4 of 4, Convergence
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K -means algorithm

I K - means algorithm is guaranteed to converge.

I Clustering depend on the particular initialization. Different
runs may produce different clusterings. Solution is not global.

I Centroids are the parameters of the model.

I K - means algorithm allows to discover latent structure of the
data



K -means algorithm

I K - means algorithm is guaranteed to converge.

I Clustering depend on the particular initialization. Different
runs may produce different clusterings. Solution is not global.

I Centroids are the parameters of the model.

I K - means algorithm allows to discover latent structure of the
data.

I K - means algorithm works well when the data consists of
well-separated Gaussians.

I K - means algorithm performs poorly on the data which does
not resemble Gausssian at all.

I Number of classes K should be known or guessed.



K -means implementation in MATLAB environment

[idx,C,sumd,D] = kmeans(X,k,Name,Value)

I idx - returns cluster indexes for each point.

I C - returns centroids.

I sumd - for each cluster returns the sum of the distances from
points to corresponding centroid.

I D - returns distance from each point to every centroid.

I X - initial data to cluster.

I k - number of clusters.

I Name refers to the name of the parameter name to be set.

’Distance’

I Value is the value of the parameter to be set.

’cityblock’



Gaussian

I One-dimensional
I Do you remember a bell shaped curve?
I Parameterized by mean µ and variance σ2

I Probability density function (pdf):

p(x | µ, σ2) =
1√

2πσ2
exp− (x− µ)2

2σ2

I D-dimensional: Parameterized by mean vector µ and the
covariance matrix Σ.

p(x | µ,Σ) =
1

(2π)D/2
| Σ |1/2 exp

[
−1

2
(x−µ)TΣ−1(x−µ)

]
I Derive for the 2- and 3- dimensional cases.



Fitting a Gaussian

Let us suppose, that a sample of n points X = (x1, . . . , xn)T were
independently drawn from some Gaussian.
The goal is to find the mean and the variance of the Gaussian.
(Fitting the Gaussian model to the data.)

I Sample mean is used as the estimate of the mean for the
Gaussian

µ̂ =
1

n

n∑
i=1

xi

I sample variance is used as the estimate of the variance of the
Gaussian

σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2

Why such estimates are correct?



Probability versus Likelihood

I Data is fixed: How likely certain set of parameters will result
given data set.

I Parameters are fixed: What is the probability of drawing
given data set with the given set of parameters.



Maximal likelihood estimate

Sometimes referred as maximal likelihood principle.
More formally

I

L(θ | x) = P (x | θ)

I The goal is to find parameters that maximize the likelihood.

I In many cases natural logarithm of the likelihood function is
more easy to deal with. Introduce log-likelihood.



Sufficient statistics

Definition
A statistic T (X) is sufficient for the parameter θ if the conditional
probability distribution of the data X, given the statistic T (x)
does not depend on the parameter θ

P (X = x | T (X) = t, θ) = P (X = x | T (X) = t).

I A statistic is sufficient for a family of probability distributions
if the sample from which it was calculated gives no additional
information.

I In other words. The value of the sufficient statistic (for the
parameter) contains all the necessary information to calculate
estimate of the parameter.



Example

Consider one dimensional Gaussian: Let us suppose that data
points in the sample are drawn independently then the probability
of data is:

P (X | µ, σ2) =

n∏
i=1

P (xi | µ, σ2)

= . . . =
1

(2πσ2)
n
2

e

−
1

2σ2

n∑
i=1

(xi − µ)2

As a next step: compute log - likelihood

logP (X | µ, σ2) = −n
2

log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − µ)2



Example

logP (X | µ, σ2) = −n
2

log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − µ)2

The last term

n∑
i=1

(xi − µ)2 =

n∑
i−1

x2i − 2µ

n∑
i=1

xi + nµ2

Likelihood depends on the sample only through
∑n

i−1 x
2
i and∑n

i=1 xi which are sufficient statistics in this case.



Estimate of the mean µ

Find the partial derivative with respect to µ:

∂ logP (X | µσ2)
∂µ

=
1

σ2

( n∑
i=1

xi − nµ
)

Solve the following equation with respect to µ.

1

σ2

( n∑
i=1

xi − nµ
)

= 0⇒ µ̂ =
1

n

n∑
i=1

xi.



Estimate of the variance σ2

Find the partial derivative with respect to σ2:

∂P (X | µ, σ2)
∂σ2

=
1

2σ4

n∑
i=1

(xi − µ)2 − n

2σ2

Solve the following equation with respect to σ2

1

2σ4

n∑
i=1

(xi − µ)2 − n

2σ2
= 0⇒ σ̂2 =

1

n

n∑
i=1

(xi − µ)2.



Multivariate case

I Mean estimate

µ̂ =
1

n

n∑
i=1

xi.

I Sample covariance

Σ̂ =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)T .


