
Assurance of Cyber Physical
Systems

Jüri Vain
Autumn 2018

Software Assurance

Lecture plan

• Last lecture was about JML and how it supports the specification of multi-view
design contracts.

• Today we consider the contract-based specification of heterogeneous
communicating components.

• The correctness conditions of contracts are discussed:
• internal correctness of a contract
• correctness of contracts composition

• The approach is based on (formalization independent) contract meta-theory

Quality requirements of Cyber Physical Systems

• Informal Quality Requirements are specified in the software requirements specification (SRS)
• Real-Time Requirement: The gate is closed when a train traverses the gate region, provided

there is a minimal time distance of 40 seconds between two approaching trains.
• Hard Real-time: definite deadline specified after which system fails.
• Soft Real-time: after deadline specified quality of system’s service degrades.

• Safety Requirement:
If someone is between the train doors, the doors are kept open and train does not move

• Energy Requirement:
If the robot’s energy drops below 25% of the capacity of the battery, it should be able to
reach the power plug to recharge.

• Dynamic Movement Requirement:
If the car’s energy sinks under 5% of the capacity of the battery, it will still be able to break
and stop.

Expressing quality requirements as contracts

• All quality requirements can be expressed as contracts.
• Underlying contract specification language must be expressive enough to capture

the notions of the views of requirements.
• Contracts provide also the discipline of proving requirements correctness.
• The consistency (soundness) and relative completeness of requirements can be

checked already before detailed design starts.

Embedded system example

Why contracts?
• Usually, CPS Software verification is hard!
• But *-critical applications need verification

Challenge 1: Quality requirements need to be formalized and proven, but
• how to formalize them?
• how to prove them?

Challenge 2: Proof can be computed in modules. If proof is modular it can be reused as a proof
component in another proof

• Contracts serve this purpose: they prove assertions about components and subsystems
• Whenever an implementation of a component is exchanged for a new variant, the new must be proven to be

conformant to the old contract. Then the old global proof still holds.

Rich Component Models of CPS
• Used for component-based software for CPS
• A rich component defines contracts in several views with regard to different viewpoints

• A contract for functional behavior (functional view)
• Several other quality contracts, e.g.,

• Real-time behavior (real-time view)
• Energy consumption (energy view)
• Safety modes (safety view)
• Movements (dynamics view)

• The contract (about the observable behavior) of a component can be described by state
machines (interface automata) or in logic in each specific view

• The interface automata encode infinite, regular path sets (traces)
• They can be intersected, unioned, composed;
• They are decidable and contracts can be proven

• Instead of an automaton in a contract, temporal logic can be used as well and compiled
to automata (temporal logic contract).

Assumptions about components’ description

• A component has one thread of control
• A component is always in a finite set of (observable) states
• The behavior of a component can be described by a protocol automaton

(interface automaton)
• The automata states and transitions can be annotated in different views =>

multi-view automata (MVA):
• A real-time automaton - MVA with real-time annotations
• A safety automaton - MVA with safety annotations
• A dynamics automaton - MVA with dynamics equations (physical movement,

electricity movement)
• An energy automaton - MVA with energy consumption annotations

Quality Contracts for Components

• Composability gives guarantees that a component property is preserved across composition/
integration

• Compositionality deduces global semantic properties of composed system from the properties of its
components

• A contract is an if-then rule: under the assumption A, the component will deliver promise P (aka
guarantee G)

• A quality contract is a contract in which view contracts form the assumptions and promises
Contract = (assumption, promise)

= IF assumption THEN promise

• A/P-quality contract based component models must be composable and compositional.

Speculative and Exploratory Design in Systems
Engineering (EU SPEEDS Project)

Whom to make the contracts?

Quality contract based component model

Given behaviors
of the

environment
Behaviors component

must procuce

Assumption:
- Minimal delay between successive trains is 50 sec.
- At startup no train is already in crossing
- Trains move in one direction
Promise:
- Gate is closed as long as a train is in crossing
- Gate is open whenever XR is empty for more than 10 sec

Railway example

Assertions Describe Behavior
• An assertion specifies a subset of the possible component behaviors

Contract = (assumption, promise)

• Contract over continuous variable:
temp: [-10°,50°]
‘after 5 sec. 25 ≤temp ≤ 30’

• Contract over discrete variable:
lights :{red, green}, req: event
‘lights initially green, and
after each ‘req’, within 1sec,
become red for 3 sec. then
back green’

Basic Relations on Contracts

• Satisfaction relation (implementation conformance) couples implementations to
contracts.

• Given contract: C = (A, G), and implementation M
• Satisfaction: M satisfies C

M╞ C ⇔def A ∩ M ⊆ G
(promise G involves potentially more behaviors than the intersection of A and M)

Basic Relations on Contracts
Given 2 contracts: C = (A, G) and C’ = (A’, G’), and implementation M
• Dominance: (C dominates C’) :

C < C’ iff A’⊆ A and G ⊆ G’ % C assumes more and guarantees less than C’
(A is weaker than A’ and G is stronger than G’)
contravariant in A and G, i.e., when assumption A “expands”, the promise G “shrinks”;

Example:
• C’: A= daylight G= video & IR picture
• C: A’= anytime G’= only IR picture
• Daylight ⊆ anytime, video&IR picture ⊆ IR picture

Claim: M╞ C and C < C’ ⇒ M ╞ C’
(if M satisfies C, and C dominates C’, then M satisfies C’)

Compatibility of Contracts
• Compatibility is a relation between two or more contracts C1 .. Cn
• Two contracts C1 and C2 are compatible whenever the promises of one guarantee that the

assumptions of the other are satisfied
• It means, when composing their implementations, the assumptions will not be violated and
• the corresponding components “fit” together

• C1 = (A1, P1) and C2 = (A2, P2) are compatible, denoted C1 <-> C2 iff

P1 ⊆ A2 and P2 ⊆ A1
i.e. C1 is compatible to C2 if C1.P is stronger (more restrictive) than C2.A, and C2.P stronger than C1.A

In logic:

P1 ⇒ A2 and P2 ⇒ A1

Composition of Contracts

• within one component (same interface), contracts in different views must be
compliant, i.e. their conjunction is valid:

• The real-time assertions can be coupled with functional, safety, and energy view
assertions

• along components – contracts of a certain viewpoint can be composed

Contract operators: Parallel Composition of Contracts
(of separate components)

• Given contracts C1= (A1, G1), C2=(A2, G2), and implementation M
• Parallel composition of contracts: C1 ⊗ C2 = (A, G)

where in set notation A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2), G = G1 ∩ G2

and in logic A ⇔ (G1 ˄ G2) ⇒ A1 ˄ A2 G ⇔ G1 ˄ G2

A ⋀ G2⇒ A1

A = max A and
A ⋀ G1⇒ A2

• where “max” refers to the order of predicates by implication;
• A is the weakest assumption such that the two referred implications hold.

⊗

Contract Operators: Conjunction (∧)
(aka viewpoint fusion)

• Supports separation of different design concerns;
• Contract can be a conjunction of multiple viewpoints, each covering a

specific concern of the design and specified by an individual contract C.

ICECCS 2016, 6-8 November 2016, Dubai - UAE 20

CB
1

BEHAVIORAL
VIEWPOINT

TIMING
VIEWPOINT

SAFETY
VIEWPOINT

CB
2 CS

2CS
1CT

(CB
1 ⊗ CB

2) ∧ CT∧ (CS
1 ⊗ CS

2)
Every contract is

a conjunction
C =∧i Ci

Example of contract-based reasoning: a three-
component subsystem K1 ǁ K2 ǁ K3

Next lecture

• How to annotate component programs??
• How to verify satisfiability of contracts
• Hoare logic for Key tool
• How to test conformance

Assertions by Contract Patterns
• A contract pattern (pattern rule) is an English-like template sentence embedded within parameters’

placeholders, e.g.:
inv [Q] while [P] after [N] steps

represents a fixed property up to parameters' instantiation (generic fragment of English).
• The semantics of a pattern is a template automaton (generic contract), which is instantiated by the

parameters
• A binding composition program translates the English sentence to a template automaton by binding its

slots

• Such contract patterns library may grow fast (Safe Air has ~400 patterns), it’s not manageable
• Parameters are instantiated by state expressions
• Semantics over discrete time model

• The idea is acceptable by users (and format less) but patterns can be very complex, like:
inv [P] triggers [Q] unless [S] within [B] after_reaching [R]

CSL – Contract Specification with Generic Text Fragments

• CSL uses generic programming for assertions

• An assertion is expressed by a contract pattern, a generic text fragment embedded with
parameters (slots):

• Parameter slots are conditions, events, intervals.
• Hedge symbols [] to demarcate slots

• Example:
- English: Whenever the request button is pressed a car should arrive at the station within 3
minutes
- CSL: Whenever [car-request] occurs [car-arrives] occurs within [3min]

{assertion}: (text ‘[‘ slot:Parameter ‘]’)*

Summary: Evaluation of HRC Component Model

What aspects are covered
in HRC model?

Advertisement

• More about contract engineering and formal verification of contract
based systems you can learn more in Formal Methods Course
ITI0130/ ITI8530 , Spring 2016.

	Assurance of Cyber Physical Systems
	Lecture plan
	Quality requirements of Cyber Physical Systems
	Expressing quality requirements as contracts
	Embedded system example
	Why contracts?
	Rich Component Models of CPS
	Assumptions about components’ description
	Quality Contracts for Components
	Speculative and Exploratory Design in Systems Engineering (EU SPEEDS Project)
	Quality contract based component model
	Railway example
	Assertions Describe Behavior
	Basic Relations on Contracts
	Basic Relations on Contracts
	Compatibility of Contracts
	Composition of Contracts
	Contract operators: Parallel Composition of Contracts�(of separate components)
	Contract Operators: Conjunction (∧) �			(aka viewpoint fusion)
	Example of contract-based reasoning: a three-component subsystem K1 ǁ K2 ǁ K3
	Next lecture
	Assertions by Contract Patterns
	CSL – Contract Specification with Generic Text Fragments
	Summary: Evaluation of HRC Component Model
	Advertisement

