
The Library class as used for the Cofoja assignment has been modified for this task. There are three 

functions that are relevant for the assignment: 

1. find 

2. addMember 

3. borrowbook 

The task is to add required JML specifications to the methods and use “KeY” to prove correctness of 

the methods. We need not change the source code for the task. 

The “find” function requires a loop invariant. Please refer to SumAndMax example of KeY: 
https://courses.cs.ttu.ee/w/images/2/2a/ITI0130_Lab11_summax.zip 
 
The requirements for the contracts are provided in the comments. Please implement them in JML. 
Some trivial specifications (e.g. assignable) are already provided. 
 
 If the tool fails to prove with the given contracts, please explore the proof tree and open goals to 
check if any additional contract can successfully prove.  
 

The configuration for proof strategy is: 

 Stop at: Default 

 Proof splitting: Delayed 

 Loop treatment: Invariant 

 Block treatment: Contract 

 Method treatment: Contract 

 Dependency contracts: On 

 Query treatment: Off 

 Expand local queries: On 

 Arithmetic treatment: Basic 

 Quantifier treatment: No Splits with Progs 

 Auto Induction: Off 

 User specific taclet sets: <all off> 

Please set the Max. Rule applications to at least 10K. If the proof requires more rules, you may have 

to press the proof button multiple times, till it completes the proof (show statistics) or display the 

message “No rules applied” on the status bar below. 

 

Some JML notations, which may be of help for the task, are discussed below. 

 \forall 

 \exists 

 ==> 

 \old 

 \result 

 Decreases 

 

 
 

https://courses.cs.ttu.ee/w/images/2/2a/ITI0130_Lab11_summax.zip


(\forall int k; 0 <= k && k < bookISBN.length; bookISBN[k] != 0) 
 

The above formula states that for all values of variable k, in the range 0<=k<bookISBN.length, must 

satisfy the property “bookISBN[k] != 0”. The expression will evaluate to false if there is any k for 

which the property is false. 

(\exists int k; 0 <= k && k < bookISBN.length; bookISBN[k] == isbn) 

\exists as in the formula above states that “there exists” a value of k in the range 

0<=k<bookISBN.length, such that the property “bookISBN[k] == isbn” is true. The formula will 

evaluate to false if there is no such k for which the property is true. 

(\forall int k; 0 <= k && k < bookISBN.length; bookISBN[k] != 0) 
==> (\exists int k; 0 <= k && k < bookISBN.length; bookISBN[k] == isbn); 

The sign “==>“used in the above formula denotes implication in logic. The above formula states that 

if the array bookISBN[] does not contain any element with value of 0, then there must exist an 

element with value isbn in the same array. 

bookISBN[k] == \old(isbn) 
 

\old refers to the value of variable in the pre- state. This is used in post-condition to refer to values 
of variables in the pre-condition state. The above formula states the equality of bookISBN[k] and the 
old value of isbn. 
 
\result < a.length ==> a[\result] == key 
 

\result refers to the return value of a method. 
 
decreases (x – i); 
 

The decreases keyword is used to specify loop variants.  
 
The \forall and \exists can be nested to for more complex logic as shown: 
 
(\exists int k; 0 <= k && k < memberID.length; memberID[k] == \old(mid) && 
borrowed[k] && (\forall int m; 0 <= m && m < borrowed.length && m != k; 
\old(borrowed[m]) == borrowed[m])); 


