Formal methods

Proving partial correctness of programs




Judgements :

e Three kinds of things that could be true or false
have been introduced

e Statements of mathematics, e.g. (X+1)? =X*+2xX+1
e Partial correctness specifications {P} C {Q}

e Total correctness specifications |P| C' |()



Terms from formal logic :

e Floyd-Hoare logic (FHL) gives rules for proving the partial and total
correctness of programs, i.e. terms |—{P} c{Q} and |— [P] C[Q]

Predicate calculus gives rules for proving theorems of logic
e Arithmetics gives decision rules for proving statements about integers

e Theorems are statements, which can be proved to be true.

Axioms are statements which are assumed to be true.
|—S means that S can be proved (unconditionally) using proof rules

o [’ |—S means that S can be deduced from the assumptions (from
axioms) I'={A,, A,, ..., A}



Terms from proof theory :

® Deduction (proof) - sequence (tree) of statements where
every statement is either
e anaxiom or
e deduced from true statements by proof rules

e Properties of the proof rules:

« Correctness (soundness) - it is not possible to deduce
something that is not correct from correct assumptions.

« Completeness - all statements that are correct are
deducible from axioms using the proof rules.

e Deduction system = set of axioms (or axiom schemas) +
set of deduction rules



FHL deduction systems

Let us have some programing language PL then in FHL for this PL

e thereis an axiom or inference rule for each command of the PL

® axioms are given as axiom schemas which can be instantiated for
particular specification (Hoare triple)

e application of rules in the proof is determined by the syntactical structure
of the program



FHL deduction systems

e The inference rules of Floyd-Hoare logic will be
specified with a notation of the form

- S, ... F S,
=S
e This means the conclusion - S may be deduced from
the hypotheses = S1, ..., F 5,

e The hypotheses can either all be theorems of Floyd-
Hoare logic

e or a mixture of theorems of Floyd-Hoare logic and
theorems of predicate calculus




SKIP

e Syntax: SKIP

e Semantics: the state is unchanged

The Skip Axiom

- [P} SKIP {P}




SKIP

e It is a simple axiom schema

e PP can be instantiated with different values

e Instances of the skip axiom are:
e - {Y=2} SKIP {Y=2}
e - {T} SKIP {T}

o F {R=X+(Y x Q)} SKIP {R=X+(Y x Q)}




Assignment :

e Syntax: V:=FE

e Semantics: the state is changed by assigning
the value of the term £ to the variable V

e Example: X:=X+1

e This adds one to the value of the variable X



Substitution Notation e

e Define P[E/V] to mean the result of replacing
all occurrences of V in P by £

e Read P[E/V] as ‘P with I for V’

e For example,

(X+1 > X)[Y+Z/X] = ((Y+Z)+1 > Y+Z)



Assignment Axiom

The Assignment Axiom

- {PLE/V]} V:=E {P}

Where V' is any variable, £ is any expression, P
is any statement and the notation P[F/V] de-
notes the result of substituting the term £ for all
occurrences of the variable VV in the statement

P.




Assignment Axiom :

- {P[E/V]} V:=E {P}

e The assignment axiom says that

e the value of a variable V' after executing an assign-
ment command V :=F

e equals the value of the expression FE in the state before
executing it



Assignment Axiom

e If a statement P is to be true after the assign-
ment

¢ Then the statement obtained by substituting £
for V in P must be true before executing it

e Every statement about V' in the postcondition,

must correspond to a statement about £ in the
precondition

e In the initial state V has a value which is about to
be lost




Assignment Axiom :

= {PLE/V]} V:=E {P}

e Instances of the assignment axiom are
e F {Y=2} x:=2 {Y=Xx}
e F {X+1=n+1} X:=X+1 {X=n+1}

e - {F=F} X:=F {X=F} (if X does not occur in F)



Precondition strengthening

- Sy, ..., F S,
=S

means F S can be deduced from + Sq,..., F 5,

e Using this notation, the rule of precondition
strengthening is

Precondition strengthening

- P= P, F {P}C{Q}
- APHCAQ)




Precondition strengthening :

e From
e F X=n = X+1=n+1

e trivial arithmetical fact

e F {X+1=n+1} X=X+1 {X=n+1}

e instance of the assignment axiom

e It follows by precondition strengthening that

F {X=n} X:=X+1{X=n+1}



Postcondition weakening :

e Just as the previous rule allows the precon-
dition of a partial correctness specification to
be strengthened, the following one allows us to
weaken the postcondition

Postcondition weakening

- (P O{Q), FQ=0Q
- {P} C{Q}




Example :

e Here is a little formal proof

1. F {R=XA0=0}Q:=0 {R=X AQ=0} By the assignment axiom

2. F R=X = R=XA0=0 By pure logic

3. F {R=X} Q:=0 {R=X A Q=0} By precondition strengthening
4. F R=XAQ=0 = R=X+(Y x Q) By laws of arithmetic

5. F {B=X} Q:=0 {R=X+(Y x Q) } By postcondition weakening

e The rules precondition strengthening and post-
condition weakening are sometimes called the
rules of consequence



Sequences :

e Syntax: C; --- ;C),

e Semantics: the commands (', ---, C, are exe-
cuted in that order

e Example: R:=X; X:=Y; Y:=R

e The values of X and Y are swapped using R as a tem-
porary variable

e This command has the side effect of changing the
value of variable R to the old value of variable X



Seqguencing rule :

¢ The next rule enables a partial correctness
specification for a sequence (' ;(Cs to be derived
from specifications for C; and ()

The sequencing rule

S APYGARQE,  F Q) Gkt
= {P} C1; G {R)




Example

(i) F {X=xAY=y} R:=X {R=xAY=y}
(ii)) F {R=xAY=y} X:=Y {R=xAX=y}
(iii) F {R=xAX=y} Y:=R {Y=xAX=y}

Hence by (i), (ii) and the sequencing rule
(iv) F {X=xAY=y} R:=X; X:=Y {R=xAX=y}

Hence by (iv) and (iii) and the sequencing rule

(v) F {X=xAY=y} R:=X; X:=Y; Y:=R {Y¥=xAX=y}




Blocks :

e Syntax: BEGIN VAR Vj; --- VAR V,,; C END

e Semantics: the command (' is executed, and
then the values of V,---.,V,, are restored to the
values they had before the block was entered

e The initial values of Vi, ---.V, inside the block are
unspecified

e Example: BEGIN VAR R; R:=X; X:=Y; Y:=R END

e This command does not have a side effect on the
variable R



Block rule

e The block rule takes care of local variables

The block rule

- PO Q)

or ().

where none of the variables Vi, ...

~ {P} BEGIN VAR Vi; ...; VAR V,; C END {Q}

.V, occur in P




Example :

e F {X=x A Y=y} R:=X; X:=Y; Y:=R {¥=x A X=y}
e it follows by the block rule that

- {X=x A Y=y}
BEGIN VAR R; R:=X; X:=Y; Y:=R END
{Y=x A X=y}

e since R does not occur in X=x A Y=y or X=y A Y=x



Conditionals e

e Syntax: IF S THEN () ELSE (5

® Semantics:

e If the statement S is true in the current state, then
(' i1s executed

o If S is false, then (5 is executed

The conditional rule

- {PAS} C{Q), - {PASSY G {Q)
- {P} IF S THEN () ELSE C; {Q}




Conditionals e

® Suppose we are given

F{T A X>Y} MAX:=X {MAX=max(X,Y)}
EA{T A = (X>Y)} MAX:=Y {MAX=max(X,Y)}

e Then by the conditional rule it follows that

H {T} IF X>Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}



WHILE command s

e Syntax: WHILE S DO C

® Semantics:

e If the statement S is true in the current state, then
(' is executed and the WHILE-command is repeated

e If S is false, then nothing is done

e Thus (' is repeatedly executed until the value of S
becomes false

e If S never becomes false, then the execution of the
command never terminates

e Example: WHILE —(X=0) DO X:= X-2



Invariants

e Suppose + {PAS} C {P}

e then P is an nvariant of C' whenever S holds

e The WHILE-rule says that

e if P is an invariant of the body |of a WHILE-command

whenever the test condition holds

e then P is an invariant of the (whole

WHILE-command



Invariants :

e In other words

e if executing C once preserves the truth of P

e then executing C' any number of times also preserves

the truth of P

e The WHILE-rule also expresses the fact that after

a WHILE-command has terminated, the test must
be false

e Otherwise, it wouldn’t have terminated



WHILE-rule :

The WHILE-rule

- {PAS} C {P}
= {P} WHILE S DO C {P A S}

- @ BEGIN R:=R-Y; Q:=Q+1 END {-}

Hence by the WH

c-rule with P = ‘X=R+(YxQ)’




Example: sequential composition

From

deduce

= {X=R+(YxQ)}
WHILE Y<R DO
BEGIN R:=R-Y; Q:=Q+1 END
{X=R+(YxQ) A = (Y<R)}

— {T} R:=X; Q:=0 {X=R+(YxQ)}

- {T}
R:=X;
Q:=0;
WHILE Y<R DO
BEGIN R:=R-Y; Q:=Q+1 END
{R<Y A\ X=R+(Y><Q)}




How to find an invariant .

e Look at the facts:

e It must hold initially
e With the negated test it must establish the result

e The body must leave it unchanged

e Think about how the loop works

e The invariant says that what has been done so far to-
gether with what remains to be done gives the desired
result



Example :

e C(Comnsider a factorial program

{X=n A Y=1}
WHILE X%O DO

BEGIN Y:=YxX; X:=X-1 END
{X=0 A Y=n!}



Example

e Look at the Facts

e Finally X=0 and Y=n!

{X=n A Y=1}
WHILE X0 DO

BEGIN Y:=YxX; X:=X-1 END
{X=0 A Y=n!}

e Initially X=n and Y=1

e On each loop Y is increased

e Think how the loop works

e Y holds the result so far

and, X is decreased

e X! is what remains to be computed

e n! is the desired result

® The invariant is X! XY = n!



Example 2 :

{X=0 A Y=1}
WHILE X<N DO
BEGIN X:=X+1; Y:=YxX END

{Y=N!}
e Look at the Facts
e Finally X=N and Y=N!

e Initially X=0 and Y=1

e On each iteration both X an Y increase



Example 2

An invariant is Y = X!

At end need Y = N!

Ah Ha!: invariant needed: |Y = X! A X<N

At end —(X<N) = X=N

{X=0 A Y=1}
WHILE X<N DO
BEGIN X:=X+1; Y:=YxX END

{Y=n1}




Conjunction and disjunction

Specification conjunction

- {P} O {Q1}, - {R} O {Q:}
= {PLA P} C{Q1 AN Q2}

Specification disjunction

- P} C{@u, - { P} C{Q2}
= APV R} C{Q1V Q2}




Summary

®¢ We have shown how rules can be devised that
allow us to make judgements about partial cor-
rectness statements

e It can be hard to get the rules right in the first
place

e We can use the rules to prove that programs
meet their specifications




Summary

e The rules reduce the proof to symbol pushing
e With practice this is routine

e The hard part is in formulating invariants




