Real-time Operating Systems and
Systems Programming

Understanding Memory (Heap)

Heap

Section of memory for dynamic structures
Bounded by brk pointer in kernel

Function for allocation and deallocation:
void *sbrk()

Normally not used directly
alloc(), malloc(), calloc(), free()

Allocators divide heap into blocks

Why dynamic allocation?

* Programs often know the amount of memory
needed and sizes for data structures runtime

« RTOS note: you might still prefer static
allocation for predictability

Constraints for allocators

Handling arbitrary request sequences
Making immediate responses for requests
Use only heap

Block alignment must be kept

Cannot modify allocated blocks

Fragmentation problem

» Allocation and deallocation sequences can
result in “holes”.

 Internal fragmentation: the holes within memory
blocks themselves

« External fragmentation: happens when there would
be enough free memory for a block, but a single
block cannot hold it.

Implementation

 Most naive: just allocate, never reuse

e More clever:

« Organize free blocks

» Deal with placement of blocks
« Splitting of blocks

 Joining of blocks

Organizing blocks

Implicit free list

Blocks have headers which include

 Block size
 Allocated/Free field

Header size: 1 word

Return the pointer to content, use header
iInternally

Header

* Due to alignment, the block sizes are multiple
of 8

3 lowest order bits are free!
e Last bit used for free/allocated

* Terminating header with size O

e “Contents” are located on double word
alignment boundaries

e We have minimum block size

Alignment trick

typedef long Align;

union header {
struct {
union header *ptr;
unsigned size;
}s;
Align x;
}

typedef union header Header;

Where to place?

 When searching for a free block, one can have
policies for placement:

* First fit — end of list is often free; fragments
* Next fit — spreads allocation; fragments worse
* Best fit — good, but slower

Should we split?

* Option to use entire block
o Or split
* |f the fit Is “good”, do not split

How to get free memory?

e Ask for more (mmap() or sbrk())

* Merge adjacent blocks upon freeing
e Can also be done when needed

Merging

* Merging next block Is simple: just add

* How to find the previous block?

 Boundary tags (block footer)

* Block header has 2 free bits, use one to show that
the previous block is free (then only free blocks
have footers)

Implementation detalls

Initialize block list
Decide policies

Blocks may behave like data structures (linked
or double linked lists)

For faster allocation, keep free lists
Segregation of free lists (see next)

Simple Segregation

For memory storage, a memory class will store
blocks up to size X (malloc({17-32}) - 32)

If new memory is needed, allocate a page

Split it into equal blocks sized according to the
storage class

DO not merge blocks
_Ink them into free list

Problems: extreme fragmentation

Segregated fit

» Allocator has an array of free lists, according to
size classes

» Allocate according to class, first fit
o Split If needed
* |f not found, search larger classes or ask more

* Thought to work well since GNU malloc()
behaves like this

Array memory management

 Dynamically defined 2d array needs 2
allocations with malloc() and some tricky
pointer Initialization

« NOTE: due to iIssues some sources suggest
using calloc() for any reasonable allocations on
non-embedded hardware

Fixed 2d array

Stack allocation
Allocation: int fixed[50][100];
Access: fixed[5][9] = 1; /* or X/
fixed[0][5*100+4+9] = 1; /* or */
fixed[1][4*100+4+9] = 1; /* etc ¥/
Initialization:
for(i=0;i<50;i++) for(j=0;j<100;j++) fixed[il[j] = O; /*
slooow */
int *ptr = fixed[0]; int *end = fixed[49]+99; *end = O;
while(ptr '= end) *ptr++=0;

Passing to a function:
Prototype: void func(int fixed[50][100]);

Dynamic 2d array

+ Stored in heap.

Allocation

Access

Initialization

Prototype

Int **dynamic;

dynamic = (int**)malloc(sizeof(int*)*50);
dynamic[0] = (int*)malloc(sizeof(int)*50*100);
for (i=1;i<50;i++) dynamic[i]=dynamic[i-1]+100;

dynamic[5][9] = 1; /* vbi ¥/
dynamic[0][5*100+9] =1; /*vbi*/
dynamic[1][4*1004+9] =1; /*jne...*/

Int *ptr = dynamic[0];
int *end = dynamic[49] + 99; *end = 0O;
while (ptr '=end) *ptr++=0;

func(int®** vec);

Dynamic 2d array

+ Stored in heap.

Allocation

Access

Initialization

Prototype

Int **dynamic;

dynamic = (int**)malloc(sizeof(int*)*50);
dynamic[0] = (int*)malloc(sizeof(int)*50*100);
for (i=1;i<50;i++) dynamic[i]=dynamic[i-1]+100;

dynamic[5][9] = 1; /* vbi ¥/
dynamic[0][5*100+9] =1; /*vbi*/
dynamic[1][4*1004+9] =1; /*jne...*/

Int *ptr = dynamic[0];
int *end = dynamic[49] + 99; *end = 0O;
while (ptr '=end) *ptr++=0;

func(int®** vec);

Notes for the test

i++, ++i

static

alll], a+1, *a+1, *(a+1), &all]
i}

x?7 1:0;

2,32.3

case

memory: struct , union, 2d array

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

