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ABSTRACT 
We describe a model-based construction of an online tester for black-box testing. Contemporary 
model-based online test generators focusing mainly on computationally cheap but far from optimal 
planning strategies cover just a fraction of the wide spectrum of test control strategies. Typical examples 
of those used are simple random choice and anti-ant. Exhaustive planning during online testing of 
nondeterministic systems looks out of reach because of the low scalability of the methods in regard to the 
model size. The reactive planning tester (RPT) studied in the chapter is targeted to fill the gap between 
these two extremes. The key idea of RPT lies in offline static analysis of the IUT model to prepare the 
data and constraints for efficient online reactive planning. The external behavior of the IUT is modelled as 
an output observable nondeterministic EFSM with the assumption that all transition paths are feasible. A 
test purpose is attributed to the transitions of the IUT model by a set of Boolean variables called traps that 
are used to measure the progress of the test run. We present a way to construct a tester that at runtime 
selects a suboptimal test path from trap to trap by finding the shortest path that covers unvisited traps 
within planning horizon. The principles of reactive planning are implemented in the form of the decision 
rules of selecting the shortest paths at runtime. Based on an industrial scale case study, namely the city 
lighting system controller, we demonstrate the practical use of the RPT for systems with high degree of 
nondeterminism, deep nested control loops, and requiring strictly bounded tester response time. Tuning 
the planning horizon of the RPT allows a trade-off to be found between close to optimal test length and 
scalability of tester behavior with computationally feasible expenses. 
 
1  INTRODUCTION 
Model-Based Testing is the automatic generation of efficient test procedures/vectors using models of 
system requirements and specified functionality. Specific activities of the practice are (1) Build the model, 
(2) Generate expected inputs (3) Generate expected outputs, (4) Run tests, (5) Compare actual outputs 
with expected outputs, and (6) Decide on further actions (whether to modify the model, generate more 
tests, or stop testing, estimate reliability (quality) of the software (DACS Gold Practice Website, 2010). 
 
1.1  On-line Testing 

On-line testing is widely considered to be the most appropriate technique for model-based testing (MBT) 
of embedded systems where the implementation under test (IUT) is modelled using nondeterministic 
models (Veanes, Campbell, & Schulte, 2007; Veanes, Campbell, Grieskamp, Schulte, Tillmann, & 
Nachmanson, 2008). Nondeterminism of IUT models stems from the physical nature of the IUT, 
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particularly, its internal parallel processes, timing conditions, and hardware-related asynchrony of 
executing the processes. Other sources of model nondeterminism are the higher abstraction level of the 
model compared to IUT implementation and the ambiguities in the specifications of the IUT. Often, the 
term on-the-fly is used in the context of on-line testing to describe the test generation and execution 
algorithms that compute and send successive stimuli to IUT incrementally at runtime. Computation of test 
stimuli is directed by the test purpose and the observed outputs of the IUT. 

The state-space explosion problem experienced by many model-based offline test generation methods is 
avoided by the on-line techniques because only a limited part of the state-space needs to be kept track of 
at any point in time when a test is running. However, exhaustive planning would be difficult on-the-fly 
because of the limitations of available computational resources at the time of test execution. Thus, 
developing a planning strategy for industrial strength online testing should address in the first place the 
trade-off between reaction time and on-line planning depth to reach the practically feasible test cases. 

The simplest approach to on-the-fly selection of test stimuli in model-based on-line testing is to apply so 
called random walk strategy where no computation sequence of IUT has an advantage over the others. 
The test is performed usually to discover violations of input/output conformance relation IOCO 
(Tretmans, 1999) or timed input/output conformance relation TIOCO (Brinksma & Tretmants, 2001) 
between the IUT and its model. Random exploration of the state space may lead to test cases that are 
unreasonably long and nevertheless may leave the test purpose unachieved. On the other hand, the long 
test cases are not completely useless, some unexpected and intricate bugs that do not fit under 
well-defined test coverage criteria can be detected when a test runs hours or even days. 

In order to overcome the deficiencies of long lasting testing usually additional heuristics, e.g. “anti-ant” 
(Li & Lam, 2005; Veanes, Roy, & Cambell, 2006), dynamic approach of DART system (Godefroid, 
Halleux, Nori, Rajamani, Schulte, Tillmann, & Levin, 2008), inserted assertions (Korel & Al-Yami, 
1996), path fitness (Derderian, Hierons, Harman, & Guo, 2010), etc. are applied for guiding the 
exploration of the IUT state space. The extreme of guiding the selection of test stimuli is exhaustive 
planning by solving at each test execution step a full constraint system set by the test purpose and test 
planning strategy. For instance, the witness trace generated by model checking provides possibly optimal 
selection of the next test stimulus. The critical issue in the case of explicit state model checking algorithms 
is the size and complexity of the model leading to the explosion of the state space, specially in cases such 
as “door lock behavior“ or deep nested loops in the model (Hamon, Moura, & Rushby, 2004). Therefore, 
model checking based approaches are used mostly in offline test generation. 

In this chapter we introduce the principle of reactive planning for on-the-fly selection of test stimuli and 
the reactive planning tester (RPT) synthesis algorithm for offline construction of those selection rules.The 
RPT synthesis algorithm assumes that the IUT model is presented as an output observable 
nondeterministic state machine (Luo, Bochmann, & Petrenko, 1994; Starke, 1972). At first, the synthesis 
method is introduced for extended finite state machine (EFSM) models of IUT in which all transition 
sequences are feasible and the EFSM can be transformed to ordinary finite state machine (FSM) model. In 
(Duale & Uyar, 2004; Hierons, Kim, & Ural, 2004) it has been shown how to transform an EFSM to one 
that has no infeasible paths. This has been achieved only for EFSMs in which all variable updates and 
transition guards are linear. In general, the problem of determining whether a path in an EFSM is feasible 
is undecidable. Therefore, we limit our approach to EFSMs which have only linear updates and transition 
guards. Later on, in Section 3.4, the synthesis algorithm will be generalised to tackle with EFSM models 
without the paths feasibility constraint. As will be shown using experimental results in the end of the 
chapter the reactive planning paradigm appears to be a practical trade-off between using simple heuristics 
and exhaustive planning in on-line model-based testing. 
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2  PRELIMINARIES OF ON-LINE TESTING WITH MODEL-BASED PLANNING 
2.1  Reactive Model-Based Planning in Testing 
The concept of a reactive planning as presented in (Williams & Nayak, 1997) is motivated by the need for 
model-based autonomy in applications which must cope with highly dynamic and unpredictable 
environments. Reactive planning operates in a timely fashion and is applicable in agents operating in these 
conditions (Lyons & Hendriks, 1992). Reactiveness of on-line testing means that tester program has to 
react to observed outputs of the IUT and to possible changes in the test goals on-the-fly. It tries to take the 
system towards the state that satisfies the desired test goals. Like generally in reactive planning, the 
model-based test executive uses a formal specification of the system to determine the desired state 
sequence in three stages - mode identification (MI), mode reconfiguration (MR) and model-based reactive 
planning (MRP) (Williams & Nayak, 1997). MI and MR set the planning problem, identifying initial and 
target states, while MRP reactively generates a plan soluion. MI is a phase where the current state of the 
system model is identified. In the case of a deterministic model transition, MI is trivial, it is just the next 
state reachable by applying the right IUT input. In the nondeterministic case, MI can determine the current 
state by looking at the output of the system provided the output is observable. In the current approach, the 
MR and the MRP phases are combined into one since both the goal and the next step toward the goal are 
determined by the same decision procedure as will be explained in detail in Section 3.5.1. Selection of 
IUT inputs taking closer to satisfying the test goal is based on the cost of applying a given input. Further, 
we characterize this cost using the so called gain function. 

The rationale behind the reactive planning method proposed in this approach lies in combining 
computationally hard offline planning with time bounded online planning phases. Off-line phase is meant 
to shift the combinatorially hard planning as much as possible in test preparation phase where the results 
of static analysis of given IUT model and the test goal are recorded in the format of compact planning 
rules that are easy to apply later in on-line phase. While the reactive planning tester is synthesised, the 
rules are encoded in the tester model and applied when the test is running. Thus, the rules synthesized 
must ensure also proper termination of the test case when a prescribed test purpose is satisfied. 
 
2.2  Model-Based Testing with EFSMs 
In this approach, we assume that the IUT model is represented as output observable EFSM. A test purpose 
(or goal) is a specific objective or a property of the IUT that the tester is set out to test. Test purpose is 
specified in terms of test coverage items. We focus on test purposes that can be defined as a set of “traps” 
associated with the transitions of the IUT model (Hamon, Moura, Rushby, 2004). The goal of the tester is 
to generate a test sequence so that all traps are visited at least once during the test run. 

The proposed tester synthesis method outputs also the tester model as EFSM where the rules for online 
planning are encoded in the transition guards as a conjuncts called gain guard. The gain guard evaluates 
true or false at the time of the execution of the tester determining if the transition can be taken from the 
current state or not. The value true means that taking the transition with the highest gain is the best 
possible choice to reach some unvisited traps from the current state. Since at each execution step of the 
tester model only the guards associated with the outgoing transitions of the current state are evaluated, the 
number of guard conditions to be evaluated at once is relatively small. To implement such a gain guided 
model traversal, the gain guard is defined using (model and goal specific) gain functions and the standard 
function max over the gain function values. The gain functions define the gain that is a quantitative 
measure needed to compare alternative choices of test stimuli on-the-fly. For each transition of the tester 
model that generates a stimulus, that can be chosen by test executive, a non-negative gain function is 
defined that depends on the current bindings of the EFSM context variables. The gain function of a 
transition defines a value that depends on the distance-weighted reachability of the unvisited traps from 
the given transition. The gain guard of the tester’s model transition is true if and only if that transition is a 
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prefix of the test sequence with highest gain among those that depart from the current state. If gain 
functions of several enabled transitions evaluate to the same maximum value the tester selects one of these 
transitions using either random selection or “least visited first” principle. Each transition in the model is 
considered to have a weight and the cost of test case is proportional to the length of whole test sequence. 
Also, the current value (true when visited, otherwise false) of each trap is taken into account in gain 
functions. 
 
2.3  Extended Finite State Machine  
The synthesis of the RPT-tester is based on a non-deterministic EFSM model of the IUT. 

Definition 1: An extended finite state machine,  is defined as a tuple , where  is a 
finite set of states,  is an initial state,  is a finite set of variables with finite value domains,  is 
the finite set of inputs,  is the finite set of outputs, and  is the set of transitions. A configuration of  
is a pair  where  and  is a mapping from  to values, and  is a finite set of 
mappings from variable names to their possible values. The initial configuration is , where 

 is the initial assignment. A transition  is a tuple , where  is the 
source state of the transition,  is the target state of the transition ,  is a transition guard that 
is a logic formula over ,  is the input of  ,  is the output of  , and  is an 
update function over . 

A deterministic EFSM is an EFSM where the output and next state are unambiguously determined by 
the current state and the input. A nondeterministic EFSM may contain states where the reaction of the 
EFSM in response to an input is nondeterministic, i.e. there are more than one outgoing transitions that are 
enabled simultaneously.  

 
2.4  Modelling the IUT 

Denote the EFSM model of IUT by . It can be either deterministic or nondeterministic, it can be 
strongly connected or not. If the model is not strongly connected then we assume that there exists a 
reliable reset that allows the IUT to be taken back to the initial state from any state. Since there exists a 
transformation from EFSM to FSM (Henniger, Ulrich, & König, 1995) for EFSM models were the 
variables have finite, countable domains, we present the further details of RPT synthesis method at first 
using simpler FSM model notation. In practice this leads to a vast state space if we use FSMs even for a 
small system. Though, as will be demonstrated in Section 3.6 by means of RPT and adjustable planning 
horizon a FSM based test synthesis method can also scale well to handle industrial size testing problems. 
The transformation from EFSM to FSM is automatic in the method implementation (TestCast Generator 
Website, 2010) and hidden from the user. 

It is essential that the tester can observe the outputs of the IUT for detecting the next state after a 
nondeterministic transition of the IUT. Therefore, we require that a nondeterministic IUT is output 
observable  (Luo, Bochmann, & Petrenko, 1994; Starke, 1972) which means that even though there may 
be multiple transitions taken in response to a given input, the output identifies the next state of IUT 
unambiguously. An example of an output observable nondeterministic IUT model is given in Figure 1. 
The outgoing transitions  and   and  of the state   have the same input  , but 
different outputs  or   or .  
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Figure 1: An output observable nondeterministic IUT model 
 
 
2.5  Modelling the Test Purpose 
A test purpose is a specific objective or a property of the IUT that the tester is set out to test. In general, 
test purposes are selected based on the correctness criteria stipulated by the specification of the IUT. The 
goal of specifying test purposes is to establish some degree of confidence that the IUT conforms to the 
specification. In model-based black-box testing the formal model of the IUT is derived from its I/O 
specification and is the starting point of the automatic test case generation. Therefore, it should be possible 
to map the test purposes derived from the specifications of the IUT into test purposes defined in terms of 
the IUT model. Examples of test purposes are “test a state change from state A to state B in a model“, 
“test whether some selected states of a model are visited“, “test whether all transitions in a model are 
visited at least once“, etc. All of the test purposes listed above are specified in terms of the structural 
elements (coverage items) of the model that should be traversed (covered) during the execution of the test. 

For synthesising a tester that fulfills a particular test purpose we extend the original model of the IUT 
with so called traps. The traps are attached to the transitions of the IUT model and they can be used to 
define which model elements should be covered by the test. Signaling about a trap traversal is 
implemented by means of trap predicate (in case of FSM just by a Boolean trap variable) and trap update 
functions. A trap is initially set to . The trap update functions are attached to the trap labeled 
transitions and computed when the transition is executed in the course of the test run. They set the traps to 

 which denotes that the traps are covered.  
The extended model of the IUT,  is a tuple . The extended set of variables 
 includes variables of the IUT and the trap variables ( ), where  is a set of trap 

variables.  is a set of transitions where each element of  is a tuple , where  is a 
transition guard that is a logic formula over , and  is an update function over . For the sake of 
brevity we further denote the model of the IUT that is extended with trap variables also by . 

Figure 2 presents an example where the IUT model given in Figure 2 is extended with trap variables. 
The example presents a visit all transitions test purpose, therefore the traps are attached to all transitions, 

. In this example  and ,  for each transition , 
. 
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Figure 2: IUT model extended with trap variables. 
 
 
2.6  Model of the Tester 
The tester model  is synthesised from the IUT model  that is decorated with traps and their 
updates. The control structure of  is derived from the structural elements of  – states, transitions, 
variables, and update functions. We synthesise a tester EFSM  as a tuple , 
where  is the set of tester states,  is the set of tester variables,  is the set of tester inputs,  is 
the set of tester outputs and  is the set of tester transitions. Necessary condition for the IO 
conformance of  and  is that their IO alphabets comply,  and , and the set of 
context variables of the tester is equal to the set of the context variables of the extended IUT model 
( ).  

The tester  has two types of states - active and passive. The set of active states  ( ) 
includes the states where the tester has enabled transitions and by output functions of these transitions the 
tester selects stimuli to IUT, i.e., controls the test execution. The set of passive states  ( ) 
includes the states of where the tester is ready to receive reactions from IUT. The transitions  
of the tester automaton are defined by a tuple , where  is a transition guard 
that is a formula of logic over  and  is an update function over . We distinguish observable and 
controllable transitions of the . An observable transition  is a transition with a passive source state. 
It is defined by a tuple , where  is a passive state, the transition 
is always enabled ( ), and it does not generate any output symbol. A controllable transition  
is a transition with an active source state of the . It is defined by a tuple 

, where  is an active state, the transition needs not receiving an 
input symbol,  is a guard of  constructed as a conjunction of the corresponding 
guard  of the extended IUT model  and the gain guard . 

The purpose of the gain guard  is to guide the execution of  so that in each state only the 
outgoing transition is enabled that is a prefix of a path with maximum gain. In other words, the gain 
guards enable transitions that are the best in the sense of the path length from the current state towards 
fulfilling a still unsatisfied subgoal of the test purpose. We construct the gain guards  offline by 
analysing reachability of traps from each transition of . The gain guards take into account the number 
and distance-weighted reachability (gain) of still unvisited traps. The tester model  can be 
non-deterministic in the sense that when there are many transitions with equal positive gain, the selection 
of the transition to be taken next is made either randomly from the best choices or by the principle “Least 
visited first”. 
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3  SYNTHESIS OF ON-LINE PLANNING TESTER FOR FSM MODELS OF IUT 

3.1  Synthesis of On-Line Planning Tester in Large 
We describe the tester synthesis procedure at first based on the FSM model of IUT. The test purpose is 
expressed in terms of trap variable updates attached to the transitions of the IUT model. We also introduce 
the parameters that define the RPT planning constraints. 

The RPT synthesis comprises three basic steps (Figure3): (i) extraction of the RPT control structure, 
(ii) constructing gain guards that includes also construction of gain functions, and (iii) reduction of gain 
guards according to the parameter “planning horizon” that defines the depth of the reachability tree to be 
pruned. 

 
 
Figure 3: RPT synthesis workflow 

In the first step, the RPT synthesiser analyses the structure of the IUT model and generates the RPT 
control structure. In the second step, the synthesizer finds possibly successful IUT runs regarding the test 
goal. The tester should make its choice in each current state based on the structure of the tester model and 
the bindings of the trap variables representing the test goal. The decision rules for on-the-fly planning are 
derived by performing reachability analysis from the current state to all trap-equipped transitions by 
constructing the shortest path trees. The decision rules are defined for controllable-by-tester transitions of 
the model and are encoded in transition guards as conjuncts called gain guards. The gain functions that are 
terms in the decision constraints are derived from the reduced shortest path trees (RSPT) on IUT dual 
automaton. A shortest-paths tree is constructed for each controllable transition. The root vertex of the tree 
corresponds to the controllable transition being characterised with the gain function, other vertices present 
transitions equipped with traps. In case there are branches without traps in the tree that terminate with 
terminals labelled with traps, the branches are substituted with hyper-edges having weights equal to the 
length of that branch. By the given construction the RSPT represents the shortest paths from the root 
transition it characterises to all reachable trap-labelled transitions in the tester model. The gain function 
also allocates weights to the traps in the tree, and closer to the root transition the higher weight is given to 
the trap. Thus, the gain value decreases after each trap in the tree gets visited during the test execution. 

Since the RSPT on IUT dual automaton has the longest branch proportional to the length of Euler’s 
contour on that automaton graph the gain function’s recurrent structure may be very complex. Last step of 
the synthesis reduces the gain functions pruning the RSPT up to some depth that is defined by parameter 
“planning horizon”. In Sections 3.2 to 3.5 the RPT synthesis steps are described in more detail. 
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3.2  Deriving the Control Structure of the Tester 
The tester model is constructed as a dual automaton of the IUT model where the inputs and outputs are 
inverted. The tester construction algorithm, Algorithm 1, has the following steps. The states of the IUT 
model are transformed into the active states of the tester model in step 1. For each state  of the IUT, the 
set of outgoing transitions  is processed in steps 2 to 5. Each transition of the IUT model is split 
into a pair of consecutive transitions in the tester model - a controllable transition  and an 
observable transition , where  and  are respectively the subset of controllable and subset 
of observable transitions of the tester model. A new intermediate passive state  is added between them 
(steps 6 – 8 of Algorithm 1). 
 

 
 
Let  denote the subset of the nondeterministic outgoing transitions of the state  where 

the IUT input is  and the guard is . The algorithm creates one controllable transition  for each set 
from state s to the passive state sp of the tester model (step 7). The controllable transition  

does not have any input and the input of the corresponding transition of the IUT becomes an output of . 
For each element  a corresponding observable transition  is created in steps 8 and 

14, where the source state  of  is replaced by , the guard is set to  and the output of the IUT 
transition becomes the input of the corresponding tester transition. 

The processed transition  of the IUT is removed from the set of outgoing transitions  (step 
9). From the unprocessed set  the subset  of remaining nondeterministic transitions 
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with the same input  and a guard equivalent to  is found (step 10). For each  an 
observable transition  is created (steps 12-16). 

The gain functions for all controllable transitions of the tester are constructed using the structure of the 
tester (steps 19–21). Finally, for each controllable transition, a gain guard  is constructed (step 24) 
and the conjunction of  and the guard of  is set to be the guard of the corresponding transition 
of the tester (step 25). 

The details of the construction of the gain functions and gain guards are discussed in the next 
subsection. 

An example of the tester EFSM created by Algorithm 1 is shown in Figure 4. The active states of the 
tester have the same label as the corresponding states of the IUT and the passive states of the tester are 
labelled with . The controllable (observable) transitions are shown with solid (dashed) lines. 
For example, the pair of nondeterministic transitions  of the IUT (see Figure 1) produces one 
controllable transition  and two observable transitions from the passive state  of the tester. 

For this example , where  is the set of trap variables. For example, in Figure 4,  
denotes the gain guard of the tester transition . Gain guards attached to the controllable transitions of the 
tester (for example , ) guide the tester at runtime to choose the next transition depending on 
the current trap variable bindings in . 

 
 
Figure 4: The EFSM model of the tester for the IUT in Figure 1 
 
 
3.3  Constructing the Gain Guards of Transitions 
A gain guard  of a controllable transition of the tester is constructed to meet the following 
requirements:  

• The next move of the tester should be locally optimal with respect to achieving the test purpose 
from the current state of the tester.  
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• The tester should terminate after all traps are achieved or all unvisited traps are unreachable from 
the current state.  

The gain guard evaluates to  or  at the time of the execution of the tester determining if the 
transition can be taken from the current state or not. The value  means that taking the transition is the 
best possible choice to reach unvisited traps from the current state. The tester makes its choice in the 
current state based on the structure of the tester model, the bindings of the trap variables representing the 
test purpose, and the current bindings of the context variables. We need some measure of quantitative 
benefit to compare different alternative choices. For each controllable transition , where  is the 
set of all controllable transitions of the tester model, we define a non-negative gain function  that 
depends on the current bindings of the context variables. The gain function has the following properties: 

• , if taking the transition  from the current state with the current variable bindings does 
not lead closer to any unvisited trap. This condition indicates that it is useless to fire the transition e 
            (P1) 

• , if taking the transition  from the current state with the current variable bindings visits 
or leads closer to at least one unvisited trap. This condition indicates that it is useful to fire the 
transition .           (P2) 

• For transitions  and  with the same source state, , if taking the transition ei  
leads to an unvisited trap with smaller cost than taking the transition ej. This condition indicates 
that it is cheaper to take the transition ei rather than ej to reach the unvisited traps.    
            (P3) 

A gain guard for a controllable transition  with the source state  of the tester is defined as 

     (1) 

where  denotes the value of the gain function of the transition , where  is 
the set of outgoing transitions of the state .  

The first predicate in the logical formula (1) ensures that the gain guard is  if and only if it is the 
guard of the transition that leads to some unvisited trap from the current state with the highest gain 
compared to the gains of the other outgoing transitions of the current state. The second conjunct blocks 
test runs that do not serve the test purpose, i.e. it evaluates to  when all unvisited traps from the 
current state are unreachable or all traps are visited already.  
 
3.4  Gain Function 
In this subsection, we describe how the gain functions are constructed. The required properties of a gain 
function were specified in the previous subsection (P1 - P3). Each transition of the IUT model is 
considered to have unit weight and the cost of the test case is proportional to the length of the test 
sequence(s) that cover all traps. The gain function of a transition computes a value that depends on the 
distance-weighted reachability of the unvisited traps from the given transition.  

For the sake of efficiency, we implement a heuristic in the gain function that favors the selection of the 
path that visits more unvisited traps and is shorter than the alternative ones. Intuitively, in the case of two 
paths visiting the same number of transitions with unvisited traps and having the same lengths the path 
with more traps closer to the beginning of the path is preferred.  

In this subsection,  denotes the tester model equipped with trap variables and 
 is a transition of the tester. We assume that the trap variable  is initialised to  and set 

to  by the trap update function  associated with the transition . Therefore, reaching a trap is 
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equivalent to reaching the corresponding transition. A transition  is reachable from the transition  if 
there exists a path  on the reachability tree of the model such that . For time being 
we ignore transition guards defined on context variables of the EFSM models. 

 
Shortest-Paths Tree 
In order to find the reachable transitions from a given transition we reduce the reachability problem of the 
transitions to a single-source shortest paths problem of a graph (Cormen, 2001). We create a dual graph 

 of the tester model as a graph where the vertices  correspond to the transitions of the 
EFSM of the tester, . The edges  of the dual graph represent the pairs of subsequent 
transitions sharing a state in the tester model. If the transition  of the tester model is an incoming 
transition of a state and the transition  is an outgoing transition of the same state, there is an edge 

 in the dual graph from vertex  to vertex , . 
The analysis of the transition sequences of the tester model  is equivalent to the analysis of the 

paths of vertices in the dual graph . In Figure 5, there is the dual graph of the tester model depicted in 
Figure 4. For example, after taking the transition  in Figure 4, it is possible that either  or  
follows. In the dual graph in Figure 5, this is represented by the existence of the edges to  and  from 
the vertex . 

 
 
Figure 5: The dual graph of the tester model in Figure 4 

In the dual graph, the shortest-paths tree from  is a tree with the root  that contains the shortest paths to 
every other vertex that is reachable from . The shortest-paths tree with the root  derived from the graph 

 is denoted by . The shortest-paths tree from a given vertex of the dual graph can be found 
using known algorithms from the graph theory. Running a single source shortest-paths algorithm  
times results in the shortest paths from each controllable transition to every reachable transition.  

The dual graph  is an unweighted graph (in this paper we assume that all transitions are uniformly 
priced). The breadth-first-search algorithm (see, for example (Cormen, 2001)) is a simple shortest-paths 
search algorithm that works on unweighted graphs. For a vertex  of the dual graph  the algorithm 
produces a tree that is the result of merging the shortest paths from the vertex  to each vertex reachable 
from it. As we constructed the dual graph in a way that the vertices of the dual graph correspond to the 
transitions of the tester model, the shortest path of vertices in the dual graph is the shortest sequence of 
transitions in the tester model. Each shortest path contains only distinct vertices. Note that the shortest 
paths and the shortest-paths trees of a graph are not necessarily unique.  
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The tree  represents the shortest paths from  to all reachable vertices of . We assume 
that the traps of the IUT model are initialised to  and a trap variable  is set to  by an update 
function  associated with the transition of the IUT model. Therefore, the tree  represents 
also the shortest paths starting with the vertex  to all reachable trap assignments. Not all transitions of 
the tester model contain trap variable update functions. To decide the reachability of traps by the paths in 
the tree  it suffices to analyse the reduced shortest-paths tree (RSPT), denoted by . 
RSPT  includes the root vertex  and only such vertices of  that contain trap 
updates. We construct  by replacing those sub-paths of  that do not include trap 
updates by hyper-edges. A hyper-edge denotes the shortest sub-path between two vertexes  and  in the 
shortest-paths tree such that  and  are labelled with trap assignments and any other vertex on that path 
is not. Thus, the reduced shortest-paths tree  contains the shortest paths from root  to all 
reachable transitions labelled with trap updates in the dual graph . In  we label each vertex 
that contains a trap variable update  by the corresponding trap  and replace each sub-path containing 
vertices without trap updates by a hyper-edge  where  is the label of the origin vertex,  is 
the label of the destination vertex and  is the length of that sub-path. Also, during the reduction we 
remove those sub-paths (hyper-edges) that end in the leaf vertices of the tree that do not contain any trap 
variable updates. 

Figure 6 (left) shows the shortest-paths tree  with the root vertex  for the dual graph 
in Figure 5. For example, the path   from the root vertex  to the vertex  in the 
shortest-paths tree in Figure 6 is the shortest sequence of transitions beginning with the transition  that 
reaches  in the example of the tester model in Figure 4. 

 
 
Figure 6: The shortest-paths tree  (left) and the reduced shortest-paths tree  
(right) from the transition  of the graph shown in Figure 5 
 

The reduced shortest-paths tree  from the vertex  to the reachable traps of the dual 
graph in Figure 5 is represented in Figure 6 (right). All vertices except the root of the reduced 
shortest-paths tree  are labelled with the trap variables, and the hyper-edges between the 
vertices are labelled with their weights. The tree  contains the shortest paths beginning with 
the transition  to all traps in the tester model in the Figure 4. For example, the tree  shows 
that there exists a path beginning with the transition  to the trap , and this path visits traps  and  
on the way. 
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Algorithm for Constructing the Gain Function 
The return type of the gain function is non-negative rational . That follows explicitly from the 

construction rules of the gain function (see steps below) and from the fact that the corpus of rational 
numbers is closed under addition and the  operator. The gain function construction algorithm for 
transition  of the tester automaton  (having dual graph ) is following: 

1. Construct the shortest-paths tree  for the transition  of the dual graph  of the tester 
control graph. 

2. Reduce the shortest-paths tree  as described in subsection  

3.4 (the reduced tree is denoted by ): Compute the lengths  of the minimal trap-free 
sub-paths between pairs of trap-labelled vertexes  and  of  and substitute these 
sub-paths with hyper-edges  labelled with weight . 

3. Represent the reduced tree  as a set of elementary sub-trees of height 1, where each 
elementary sub-tree is specified by the production rule of the form 

     (2) 

where the non-terminal symbol  denotes the root vertex of the sub-tree and each  (where 
) denotes a leaf vertex of that sub-tree,  is the branching factor, and  

corresponds to the root vertex  of the reduced tree . 
4. Rewrite the right-hand sides of the productions constructed in step 3 as arithmetic terms, thus 

getting the production rule in the form  

     (3) 

where  denotes the trap variable  of lifted type ,  is a constant for the scaling of the 
numerical value of the gain function, and  the distance between vertexes  and  in the 
labelled tree . The distance is defined by the formula 

  
where  is the number of hyper-edges on the path between  and  in  and  is the 
value of the weight  corresponding to the concrete hyper-edge. 

5. For each symbol  denoting a leaf vertex in  define a production rule: 

     (4) 

6. Apply the production rules (3) and (4) starting from the root symbol  of  until all 
non-terminal symbols  are substituted with the terms that include only terminal symbols  and 

, ( , where  is the number of trap variables in ). The root vertex 
 of the labelled tree  may not have a trap label. Instead of a trap variable , we 

use a constant  as the label resulting  in the rule (3). 
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Table 1: Application of the production rules to the elementary sub-trees of height 1 of the reduced 
shortest-paths tree   

 
 
Table 2: Gain functions of the controllable transitions of the tester model  

 
It has to be pointed out that the gain function characterizes the expected gain only within the planning 
horizon. The planning horizon is determined by the maximum length of the paths in the reduced 
shortest-paths tree. 

Table 1 shows the results of the application of the production rules (2), (3) and (4) to the vertexes of 
the reduced shortest-paths tree  in Figure 6 (right). As the root  is not labelled with a trap 
variable, the transition  does not update any trap, a constant  is used in the production rule (3) in 
the place of the trap variable resulting  in the first row of Table 1. Application of the 
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production rules (3) and (4) to the tree  starting from the root vertex  results in the gain 
function given in the first row of Table 2. Table 2 presents the gain functions for the controllable 
transitions of the tester model (Figure 4). The gain guards for all controllable transitions of the tester 
model are given in Table 3. The type lifting functions of the traps have been omitted from the tables for 
the sake of brevity.  

Table 3: Gain guards of the transitions of the tester model 

 
 
 

3.5  Adjustable Planning Horizon 
Since the gain functions are constructed based on RSPTs their complexity is in direct correlation with the 
size of RSPT. In that way, the all transitions coverage criterion sets the number of traps equal to the 
number of transitions in the IUT model. Considering the fact that the number of transitions in the 
full-scale IUT model may reach hundreds or even more, the gain functions generated using RSPTs may 
grow over a size feasible to compute at test execution time. To keep the on-line computation time within 
acceptable limits RSPT pruning is added to the RPT synthesis technique. The planning horizon defines the 
depth of the RSPT to be pruned. Although the pruning of RSPT makes on-line planning incomplete it 
makes the RPT method fully scalable regardless of the size of IUT model and the test goal. Moreover, 
there is an option to set the planning horizon automatically offline when specifying the upper limit to the 
size of RSPT pruned. Pruning of RSPT reduces the resolution capability of RPT gain functions. In order 
to resolve the potentially rising priority conflicts between transitions having equal maximum gain values, 
RPT uses either random or anti-ant choice mechanisms. Both conflict resolution approaches are 
demonstrated on the City Lighting Controller case study and details discussed in Section 5.4. 
 
3.6  Complexity of Constructing the Tester Based on EFSM Models with 
Feasibility Assumption 
The complexity of the synthesis of the reactive planning tester based on EFSM models of IUT where all 
paths are feasible is determined by the complexity of the construction of the gain functions. For each gain 
function the complexity of finding the shortest-paths tree for a given transition in the dual graph of the 
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tester model by breadth-first-search is  (Cormen, 2001), where  is the 
number of transitions and  is the number of transition pairs of the tester model. The number of 
transition pairs of the tester model is mainly defined by the number of transition pairs of the observable 
and controllable transitions which is bounded by . For all controllable transitions of the tester the 
upper bound of the complexity of the offline computations of the gain functions is . 

At runtime each choice by the tester takes no more than  arithmetic operations to evaluate 
the gain functions for the outgoing transitions of the current state. 

 
4  PERFORMANCE EVALUATION OF RPT USING CASE STUDY EXPERIMENTS 
The experiments are made to prove the feasibility of the RPT method and to compare its performance with 
the random choice and anti-ant methods using an industry scale case study. 
 
4.1  The Case Study 
The testing case study developed under the ITEA2 D-MINT project (ITEA2 project “Deplyment of 
Model-Based Technologies to Industrial Testing” Website, 2010) evaluates the model-based testing 
technology in the telematics domain. The IUT of the case study is a Feeder Box Control Unit (FBCU) of 
the street lighting control system. The most important functionality of the FBCU is to control street 
lighting lamps either locally, depending on the local light sensor and calendar, or remotely from the 
monitoring centre. In addition, the controller monitors the feeder box alarms and performs power 
consumption measurements. The communication between the controller and monitoring centre is 
implemented using GSM communication. The RPT performance evaluation experiments are performed on 
the powering up procedure of the FBCU. 
 
4.2  Model of the IUT 
The model implements the power-up scenario of the FBCU. The strongly connected state model of the 
FBCU includes 31 states and 78 transitions. The model is non-deterministic. Pairs of non-deterministic 
transitions depart from seven states of the model and a triple of non-deterministic transitions departs from 
one state of the model. The minimum length of the sequences of transitions from the initial state to the 
farthest transition is 20 transitions, i.e. the largest depth of the RSPT for any transition is 20. The model is 
similar to the model of well known digital door lock example that has several nested loops. There are 
several possibilities to fall from the successful scenario back to the first states if something goes wrong in 
the scenario. 
 
4.3  Planning of Experiments 
In order to demonstrate the algorithms in different test generation conditions we varied the test coverage 
criterion. The tests were generated using two different coverage criteria - all transitions and a single 
selected transition. The single transition was selected to be the farthest one from the initial state. The 
location of the single transition was selected on the limit of the maximum planning horizon. Different 
RPT planning horizons (0 to 20 steps) were used in the experiments. In case the RPT planning resulted in 
several equally good subsequent transitions in the experiment with the selected coverage criterion and 
planning horizon we used alternatively the anti-ant and random choice methods for choosing the next 
transition. If the planning horizon is zero then RPT works like pure random choice or anti-ant method 
depending on the option selected in the experiment. 

As a characteristic of scalability we measured the length of test sequences and time spent on-line on 
each planning step. The planning time is indicative partially only because it depends on the performance 
of the RPT executing platform. Still, those measurements give some hints about the scalability of the 
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method with respect to the planning horizon. In addition to the non-deterministic model there is always a 
random component involved in the RPT planning method. Therefore we performed all experiments in 
series of 30 measurements and calculated averages and standard deviations over the series. 
 
4.4  Results and Interpretation of the Experiments 
The experiments are summarized in Table 4 and in Table 5. The lengths of the test sequences are given in 
the form average ± standard deviation of 30 experiments. The results in the first row of Table 4 and Table 
5 with planning horizon 0 correspond to the results of the pure anti-ant and random choice methods. For 
estimation of the minimum test sequence length we modified the examined non-deterministic model to the 
corresponding deterministic model with the same structure. Eliminating the non-determinism in the model 
by introducing mutually exclusive transition guards and using the maximum planning horizon 20 the 
reactive planning tester generated the test sequence with length 207 for “all transitions” coverage criteria 
on the modified deterministic model. The minimum length of the test sequence to reach the “single 
selected transition” was 20 steps. 
 
Table 4: Average lengths of the test sequences satisfying the “all transitions” test purpose 

Length of planning horizon 
(number of steps) 

anti-ant random choice 

0 18345 ± 5311  44595 ± 19550 
1 18417 ± 4003 19725 ± 7017  
2 5120 ± 1678  4935 ± 1875  
3 4187 ± 978  3610 ± 2538  
4 2504 ± 815  2077 ± 552  
5 2261 ± 612  1276 ± 426  
6 2288 ± 491 1172 ± 387  
7 1374 ± 346  762 ± 177  
8 851 ± 304  548 ± 165  
9 701 ± 240  395 ± 86  
10 406 ± 102  329 ± 57  
11 337 ± 72  311 ± 58  
12 323 ± 61  284 ± 38  
13 326 ± 64  298 ± 44  
14 335 ± 64  295 ± 40  
15 324 ± 59  295 ± 42  
16 332 ± 51  291 ± 52  
17 324 ± 59  284 ± 32  
18 326 ± 66  307 ± 47  
19 319 ± 55  287 ± 29 
20 319 ± 68 305 ± 43 

 

The experiment shows that the reactive planning tester with maximum planning horizon results on average 
in a test sequence many times shorter and a considerably lower standard deviation than the anti-ant and 
random choice tester. For the test goal to cover all transitions of the non-deterministic model the RPT 
generated an average test sequence 1.5 times longer than the minimum possible sequence. The difference 
from the optimum is mainly due to the non-determinism of the model. Compared to the RPT with the 
maximum planning horizon the anti-ant and random choice tester generated test sequences that were on 
average 57 and 146 times longer, respectively. 
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Table 5: Average lengths of test sequences satisfying the test purpose to cover one single transition (the 
farthest transition from the initial state) 

Length of planning horizon 
(number of steps) 

anti-ant random choice 

0 2199 ± 991 4928 ± 4455 
1 2156 ± 1154 6656 ± 5447 
2 1276 ± 531 2516 ± 2263 
3 746 ± 503 1632 ± 1745 
4 821 ± 421 1617 ± 1442 
5 319 ± 233 618 ± 512 
6 182 ± 116 272 ± 188 
7 139 ± 74 147 ± 125 
8 112 ± 75 171 ± 114 
9 72 ± 25 119 ± 129 
10 73 ± 29 146 ± 194 
11 79 ± 30 86 ± 59 
12 41 ± 15 74 ± 51 
13 34 ± 8 48 ± 31 
14 34 ± 9 40 ± 23 
15 25 ± 4 26 ± 5 
16 23 ± 2 24 ± 3 
17 22 ± 2 21 ± 1 
18 21 ± 1 21 ± 1 
19 21 ± 1 21 ± 1 
20 21 ± 1 21 ± 1 

 
If the test goal is to cover one selected transition (Table 5), the RPT reached the goal with the length of 

test sequence that is close to optimal. The anti-ant and random choice tester required on average 104 and 
235 times longer test sequences. This experiment shows that the anti-ant tester outperforms the random 
choice tester by more than twice on average with smaller standard deviation. This confirms the results 
reported in (Li & Lam, 2005). 

The dependency of the test sequence length on the planning horizon is shown in Figure 7. 
Non-smoothness of the curves is caused by the relatively small number of experiments and large standard 
deviation of the results. The planning horizon can be reduced to half of the maximum planning horizon 
without significant loss of average test sequence lengths for “all transitions” coverage criterion in this 
model. Even if planning few steps ahead significantly shorter test sequences were obtained than in case of 
the random or anti-ant methods. For instance, when the planning horizon is restricted to 2 or 5 steps, the 
average test sequence length decreases by approximately 4 or 8 times, respectively, compared to the 
anti-ant and random methods. If the test goal is to cover a single transition, then the test sequence length 
decreases exponentially to the value of the planning horizon. 

At planning horizons less than maximum, there is no clear preference among the methods that could 
resolve the non-determinism of transition selection. The anti-ant method performs better for all horizon 
lengths in case of the “single transition” coverage criterion (Figure 7, right) and for small values of 
horizon length in case of “all transitions” coverage (Figure 7, left). The random choice method performs 
better on average for horizon lengths from 4 to 10 (Figure 7, left) for this model for the “all transitions” 
coverage criterion. 
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Figure 7: Average test sequence lengths of the test sequences satisfying the all transitions (left) and single 
transition (right) test goal 

 
Figure 8: Average time spent for on-line planning of the next step 

 
We also measured the time spent by tester for one on-line planning (selection of a test stimulus). The 

average duration of a planning step in milliseconds is shown in Figure 8. The computer used for 
experiments has an Intel Core 2 Duo E6600 processor running at 2.4 GHz. Experiments on the model 
demonstrate that the growth of planning time with respect to the planning horizon is not more than 
quadratic. The average time for calculating the gain function values with a maximum planning horizon in 
one step is less than 9 milliseconds. When the planning horizon is increased to maximum then the average 
depth of the shortest paths trees remains below the maximum horizon and the average planning time 
stabilizes. 
 
5  EXTENDING THE REACTIVE PLANNING TESTER FOR EFSM MODELS OF IUT 

5.1  Method in general 
In this section, we extend the on-line planning tester synthesis method to EFSM models of IUT with 
restrictions that (i) the state variables must be of finite domain, (ii) the IUT automaton must be 
output-observable, i.e. the transitions taken by IUT are recognizable by the tester. We recall shortly some 
informal definitions related to EFSM models. EFSM is a collection of states , transitions , state 
variables  and input variables . States and transitions are labeled by names. Every transition  
has a  and  state and is attributed by a  and . A  is a predicate on 
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state and input variables and must evaluate to  for the transition  to be enabled. An  is a set 
of assignments of expressions to state variables. The expressions can contain both state and input 
variables. The types of the variables and operations allowed in the updates and guards are determined by 
the underlying solvers used. It is safe to constrain the domain to booleans, finite enumerations with 
equality and bounded integers with linear arithmetic, but it can be broadened. We do not model input and 
output symbols separately, the variables of enumeration type can be used for that purpose. External 
assignment of input variables is assumed whenever an input variable occurs in the guard or update of the 
transition to be taken. The only condition to outputs is that the automaton must be output-observable, i.e. 
the transition taken is detectable by the tester. A configuration  is a tuple of a state and state 
variables. An initial configuration  is a subset of all configurations. 

The goal of the test is specified as a set of traps . In the sequel we define a trap  as a pair 
 where  is a transition and  is a predicate defined on variables. Covering a trap means 

taking the transition  in a configuration , where the trap condition  is satisfied in 
the pre-state of the trap transition . Defining trap in this way allows to express many different coverage 
criteria, e.g. path, all transitions or state variable border conditions. In order to avoid multi-level indexing, 
a notation  means the guard of the transition  associated to the trap . To model the traps as a 
part of the EFSM model a boolean variable  and update  of the transition  is added 
to the EFSM model for every trap  and all the trap variables  are initialized to . 

By a set  we mean a set of all transition sequences  from transition  to the 
transition of trap  , where all the transitions are feasible for the model and  is satisfied in the 

. Covering a trap  means finding a path in  for transitions  leaving from initial 
states. Length of a  is the number of transitions in the sequence . Feasibility 
constraint  is a predicate on variables on state  such that  is 
feasible. 

The testing process is divided into the computationally expensive off-line phase where a IUT model is 
analyzed and the efficient on-line phase where the instances of test input data are generated for guiding 
the IUT towards the uncovered traps. The off-line constraint and measure generation comprises a 
breath-first backwards constraint propagation static analysis algorithm. The propagation continues until 
the fixpoint is reached or the search horizon bound is met. The result of the off-line process is a set of 
constraints and expected gain measures to make the decisions on-line. More exactly, for every pair of a 
state  of the IUT EFSM and a trap  the following is generated:  

1. a shortest path constraint  being a sufficient feasibility condition for the shortest paths of 
 where  is pre-state of ; and its length ;  

2. a weakest constraint  being a sufficient feasibility condition for any path  in  
where  and the length of the paths does not exceed .  is equal to the search 
horizon bound or the length of the longest path  that’s feasibility condition has a model that is not 
a model for the feasibility constraint of any other shorter path .  
for all  with .  expresses a fixpoint of  in the later 
case and  is the length of the longest path contributing to the fixpoint calculation.  

The exact rules for calculating the constraints are presented in section  
5.3. 

For every pair of a transition  and trap  the following is generated:  
1. a shortest path constraint  being a sufficient reachability condition for the shortest path of set 

 and its length ;  
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2. a weakest constraint , that is a sufficient reachability condition for any path  in 
 with length not exceeding .  is equal to the search horizon bound or the 

length of the longest path  that’s feasibility condition has a model that is not a model for the 
feasibility constraint of any other shorter path .  for all  with 

.  expresses a fixpoint of  in the later case and  
is the length of the longest path contributing to the fixpoint calculation.  

3. a guarding constraint  on state variables evaluates to  for the transition  if  is the 
initial transition of a shortest path of  considering the actual valuation of the state 
variables.  

The on-line process takes the generated constraints, distance measures and the IUT model as an input. It 
does a three step planning on every step of the testing process: 

• selects a trap from the set of uncovered traps to be taken next  

• selects a transition to guide IUT closer to the trap  

• selects an input to take the chosen transition  

Computationally demanding parts of the tester like simplification, quantifier elimination and satisfiability 
checks of the constraints are handled by the state of art SMT solver. 
 
5.2  Simple example 
We demonstrate the result of off-line computation and on-line test data generation on a simple model of a 
double counter in Figure 9 before we explain the method more precisely. The model has one state variable 

 and input variable , both of integer type with range . Every transition is attributed by a label, 
guard and optional update. The table shows the constraints generated by the off-line computation for the 
trap . The constraints  on the third column are satisfied only for some values of  and  that 
make the shortest paths with length  on the EFSM control structure reachable. For example the 
condition  means that the shortest path with length  to the trap starting with transition  is 
feasible only when the value of  is  and input must be chosen to be greater than . The weakest 
conditions  on the fifth column give the largest set of values of the variables that can be used for 
reaching the trap. For any input value satisfying the constraint, there is a path to the trap not longer than 

. The result of a constraint  seems unintuitive on the first glimpse. It is clear that a path starting 
with  can eventually lead to the trap regardless of the value of  in state , but it is not reflected in 
the constraint. The reason is that the calculation reaches a fixpoint for  on step , as can be seen from 
the values of  and  due to presence of transition .  expresses condition on the 
state variables for paths no longer than , but it is sufficient for our purposes and there is no need to 
generate more general constraint. A condition  is satisfied in current valuation of the data variables 
when the shortest path to trap  starts with transition . The conditions are used to guide the tester 
towards the trap. It can be seen most clearly from the conditions , , and  for the 
transitions , , and  leaving from state . 
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Fig. 9  Model of IUT (double counter) and generated constraints 

Lets have a look what happens on-line when the real inputs must be generated, assuming that we have all 
the constraints prepared off-line. We start from state  with  equal to . The guarding constraints are 
used for choosing a right transitions, but  and  are both satisfiable and do not constrain the 
choice, because a path with length  is possible both ways. We have a non-deterministic model and 
nothing in the model forces  to be taken, but let us assume that the random choice works for our favor 
this time. Choosing transition  gives a concrete instance  of constraint  
to be solved and an input  is generated. Guarding constraints , , and  
determine that  is the transition of choice from state . Just solving  for determining the 
input  can give a value  which can trigger  also. Solving  
gives value  for the input and resulting  to be taken and  to be equal to 4. Next step does not 
depend on input, but the guard of  is satisfied and taken eventually.  
 
5.3  Offline computation 
The generation of reachability constraints that guide on-line testing process is carried out off-line. The 
reachability constraints for transition-trap and state-trap pairs are constructed by backwards breath-first 
propagation of the constraints starting from the traps. The shortest path constraints  are constructed 
when the transition or state with constraint not equal to  is encountered first in that propagation. For 
finding the weakest condition  the computation continues and the constraints are weakened at each step 
until the fixpoint is reached or the search depth bound is reached. The fixpoint is guaranteed to exist as 
long we restrict the model to be of finite domain, but finding it may be computationally infeasible and the 
computation is canceled at some traversal depth. In that case, the constraints express the conditions for the 
paths with length up to the bound.  

Algorithm 2 presents the procedure for finding the constraints and path lengths for on-line test 
navigation. The algorithm employs the monotonic nature of the constraint derivation. It carries over only 
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the changes  discovered at each traversal step and adds the result to the previous value  of the 
constraint  as a new disjunct (lines 8, 12). State condition change  is calculated (line 6) by 
eliminating all the inputs  from the disjunction of constraint changes of the outgoing transitions of the 
current state . Input ellimination is carried out by the existential quantifier ellimination procedure in the 
simplification procedure. Transition condition change  is a conjunction of two constraints (line 11). 
The first conjunct  is the guard of the transition . The second conjunct is the weakest 
precondition of the current transition’s update  and of the condition change  of that 
transition’s target state . The weakest precondition calculation is a straightforward substitution in case 
the update is a collection of evaluations and assignments. The most complicated is the calculation of the 
guarding constraints  (line 14). The update of the constraint  can be interpreted as the valuation of 
the state variables that satisfy the transition’s constraint change  but do not satisfy the constraint 

 of the source state of the transition  and will be used to extend the interpretation set of the 
 in the next iteration. Constraints  for the shortest paths are determined when satisfiable 

constraint change  is found (line 9, 13). The fixpoint is reached when no weakening happens on 
the traversal step and it is checked by the constraint satisfiability check (SAT) procedure (line 7). Some 
simplification procedures are applied to all intermediate results to reduce the size of the formula. 
 

 
 
Tuning the planning horizon or depth level of the search allows a trade-off to be found between close to 
optimal (in terms of test length) and scalability of tester behavior with computationally feasible expenses. 
The discussion about finding a suitable planning horizon is given in Section 5.6. 
 
5.4  On-line computation 
The goal of on-line computation during a test run is to find the shortest possible path covering the 
maximal number of traps while keeping the on-line computation as efficient as possible. The planning, 
based on pre-computed constraint set, is done repetitively, i.e. before executing each EFSM transition. 
Planning is performed in three steps (Algorithm 3): (i) the succession of traps is planned; (ii) the path from 
current state to the next trap is planned; (iii) the data is generated for IUT to guide the IUT along the 
preferred path.  
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The next trap to reach from current state is selected in step (i) using the lengths  to traps found 
off-line. The lengths serve as interval estimates of the distances to traps and are used for planning the 
order the traps have to be taken. The actual test length depends on the valuation of the variables and 
cannot be determined off-line. There are several strategies for selecting the order of traps starting with the 
greedy approach to guide the test towards the closest uncovered trap and ending with the global planning 
approach that involves solving NP-complete asymmetric traveling salesman problem (ATSP) for finding a 
shortest path through all traps. This can be computationally quite expensive when the number of traps is 
large. Still, this is not the issue because the intended order of covering traps can be computed off-line. Fast 
heuristic approximating ATSP algorithms can be applied also later in on-line phase to refine the plan 
when the IUT due to its non-determinism deviates from the planned path. Alternatively, the greedy 
approach does all the planning on-line trying to reach the closest trap from the current state taking into 
account data constraints. The planning horizon can be parametrically tuned from greedy to global 
planning by setting how many traps ahead the planning covers. 

To guide IUT towards the trap chosen in step (i) the next transition is selected in step (ii) using the 
guarding constraints  of outgoing from current state  transitions . The guarding constraints of 
outgoing transitions are mutually exclusive except when two transitions prefixing two different paths to 
the same trap  have equal lengths and non-contradictory data constraints. For checking the constraints 

 we apply a simple heuristic that chooses constraints in the order of increasing values of . 
In order to take the chosen transition in step (ii) a suitable input must be generated in step (iii). The 

input is generated by solving the constraint of the path using random choice, border value, or corner value 
data coverage strategy. The most liberal constraint that can be used is denoted by . This constrains 
the input to the values that guide IUT towards the trap along the path that is not longer than . It may 
not be the optimal path and the values satisfying  may trigger also some other transition in the case 
of non-deterministic automaton. The negations of the guards of neighboring transitions may be conjoined 
to the constraint  to rule out the non-deterministic choice. Alternatively the constraint  can be 
used, if satisfiable, to guide the IUT to the trap along the shortest path. Input generation involves 
constraint solving which is not in the scope of this paper. We assume that the constraints involving 
propositional logic and linear inequalities can be solved efficiently by standard methods. 
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5.5  Example 
Inres protocol is a well-known example in the model verification and test generation community. The 
protocol is simple but not trivial and provides a good reference for studying performance and scalability 
issues of competing methods. The protocol was introduced in (Hogrefe, 1991) and the Inres Initiator 
model is depicted in Figure 10 as an EFSM. The model is deterministic and does not demonstrate the full 
potential of the method presented. The on-line phase of input data generation can be carried out also 
off-line for deterministic systems.  

The model has 4 states, 14 transitions, 2 state variables counter and number, and 2 input variables inp 
and num. The integer variable counter has a range , number and num have a range  and the 
enumeration variable inp models the input messages DR, CC, AK, ICONreq, and Timer.timeout. 

 
 

 
 
Fig 10: EFSM model of INRES protocol 

An excerpt of the constraints and distance measures generated by the off-line tester synthesis is presented 
in Table 6. Traps are defined for transitions  with condition  and shown in column To. The 
constraints and distance measures are given for a pair of transitions in columns Via and To, i.e. the 
constraint  on the second line of the column C is . Values  in the column C* 
mean that the constraint is the same as in column C.  

Table 7 explains the on-line tester behavior for guiding the IUT towards the trap on transition t3 from 
the initial state Disconnected. The data in the table expresses the results of constraint solving done in the 
on-line process. Empty entries mean that there was no need to solve the corresponding constraints. The 
column Next expresses the decision of the transition to be taken next and it succeeds always because of the 
deterministic nature of the model. Two steps similar to step 2 are omitted. 
 
 
 

Kasutaja
Line
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Table 6: Excerpt of generated constraints for the Inres Initiator example 
Via T

o 
C  C L C* L* 

t0 t0 true inp = ICONreq 1 C 1 
t11 t0 false inp = DR 2 C 2 
t1 t1 true inp = CC 1 C 1 
t2 t1 false counter 3   

inp = Timer.timeout 
2 C 2 

t3 t1 false counter = 4   
inp = Timer.timeout 

3 C 3 

t12 t1 false inp = DR 3 C 3 
t0 t3 true inp = ICONreq 6 C 6 
t1 t3 false inp = CC 8 C 8 
t2 t3 counter 

<= 3 
counter = 3   

inp = Timer.timeout 
2 counter 3  5 

     inp = 
Timer.timeout 

 

t11 t3 false inp = DR 7 C 7 
t3 t3 counter = 

4 
counter = 4  inp = 

Timer.timeout 
1 C 1 

t12 t3 false inp = DR 7 C 7 
t4 t4 true inp = 1 1 C 1 

t13 t4 false inp = DR 4 C 4 
t5 t5 number = 

0 
inp = AK  num = number 

 
1 C 1 

   number = 0    
t6 t5 number = 

1 
inp = AK  num = number 

 
3 C 3 

   number = 1  C  
t7 t5 false inp = AK  num <> number 

 
2 C 2 

   number = 0  counter <=3    
t8 t5 false inp = AK  num number  7 C 7 
   counter = 4    

t9 t5 false inp = Timer.timeout  2 C 2 
   number = 0  counter <=3    

t10 t5 false inp = Timer.timeout  
counter = 4 

7 C 7 

t14 t5 false inp = DR 7  7 
t5 t6 number = 

0 
inp = AK  num = number 

 
3 C 3 

   number = 0    
t6 t6 number = 

1 
inp = AK  num = number 

 
1 C 1 

   number = 1    
t7 t6 false inp = AK  num number  2 C 2 
   number = 1  counter 3    
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t8 t6 false inp = AK  num number  5 C 5 
   counter = 4    

t9 t6 false inp = Timer.timeout  2 C 2 
   number = 1  counter 3    

t10 t6 false inp = Timer.timeout   
counter = 4 

5 C 5 

t14 t6 false inp = DR 5 C 5 
 

Table 7: Creating a path to reach the transition t3 from the state Disconnected 

Step (State, counter, 
number) 

Vi
a 

T
o 

C  C C* Ne
xt 

1 (Disconnected,_,_,) t0 t3  ICONreq  t0 
  t11 t3     

2 (Waiting,0,_) t3 t3     
  t2 t3  UNSAT Timer.tim

eout 
t2 

  t1 t3     
  t12 t3     
 ...       

5 (Waiting,3,_) t3 t3     
  t2 t3  Timer.tim

eout 
 t2 

  t1 t3     
  t12 t3     

6 (Waiting,4,_) t3 t3  Timer.tim
eout 

 t3 

  t2 t3     
  t1 t3     
  t12 t3     

 
Table 8 demonstrates the use of the generated constraints for guiding the IUT along the path 

. This path is particularly difficult to achieve with random testing  (Derterian, 
Hierons, Harman, & Guo, 2010), but it is straightforward using the proposed method. 

The off-line calculation of the constraints for all-transitions test goal expressed by 14 traps took 54 
seconds on 2 GHz computer and involved 1744 calls to underlying solver. The constraint solving for 
on-line data generation is fast, being 0.026 seconds in average and comprising mainly of input-output 
operations for such a simple constraints. The on-line solving time has been in the same order of magnitude 
in other case studies that include considerably larger constraints having thousands of subformulas. 
 
5.6  Handling complexity 
The complexity of on-line constraint solving is a critical factor in testing time critical systems. Strictly 
bounded reaction time in test execution is a restriction that forces to pay contribution to test run-time 
planning quality. Several heuristics can be used for guiding the selection of test paths at run-time, e.g., 
anti-ant search strategy (Nachmanson, Veanes, Schulte, Tillmann, & Grieskamp, 2004), in (Derderian, 
Hierons, Harman, & Guo, 2010) fitness function is computed for EFSM IUT models, in (Vain, Raiend, 
Kull, & Ernits, 2007) a control graph based gain function is proposed and its usability discussed. To 
address the scalability problem of the method proposed in Section 5.1, we propose to extend the offline 
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test data constraint construction technique so that it takes explicitly into account its run-time execution 
time bound. The data constraint construction method describe in Section 5.3 is incremental in the sense 
that the algorithm extends the global path constraint step-wise by backward search starting from the traps. 
Thus, it is natural to assume that the size of path constraint increases monotonously along the model 
traversal process. One can calculate the constraint complexity by the length of the constraint formula but 
that gives only indirect characterization of its on-line solving time. Therefore, instead of formula based 
complexity estimation we evaluate the data constraint on-line solving time iteratively at each constraint 
construction step. The constraints are solved with arbitrary data values since due to the constraint shape 
used its valuation time is roughly independent of its variable valuation. As a result of iterative evaluation 
of the path constraint for a trap, its construction stops when the constraint solving time exceeds the test 
reaction time limit.  
 
Table 8: Executing the transition path t0;t1;t4;t6;t4;t5 

Step (State, counter, 
number) 

Via To C  C C* Nex
t 

1 (Disconnected,_,_,) t0 t0  ICONr
eq 

 t0 

  t11 t0     
2 (Waiting,0,_) t1 t1  CC  t1 
  t2 t1     
  t3 t1     
  t12 t1     

3 (Connected,0,1) t4 t4  IDATr
eq 

 t4 

  t13 t4     
4 (Sending,0,1) t6 t6  AK(1)  t6 
  t7 t6     
  t9 t6     
  t5 t6     
  t8 t6     
  t10 t6     
  t14 t6     

5 (Connected,0,0) t4 t4  IDATr
eq 

 t4 

  t13 t4     
6 (Sending,0,0) t5 t5  AK(0)  t5 
  t7 t5     
  t9 t5     
  t6 t5     
  t8 t5     
  t10 t5     
  t14 t5     

 
The given heuristics alone provide only partial information for on-line planning since every trap may 

not be “visible” (the data constraint grows over complexity limit) for some states of the IUT model. In 
order to avoid those “blind” states regarding traps with too complex data constraints, we use partial (and 
more concise) guiding information in the form of control graph based distance estimation from given state 
to the states where the full data constraint to “unseen” trap is present. Similarly to (Vain, Raiend, Kull, & 
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Ernits, 2007) the weaker knowledge about the trap reachability is encoded in the gain functions that allow 
evaluating the control graph distances and based on that, the best directions to the states where the full 
data constraint is defined for a targeted trap. Procedurally, both explicit and implicit knowledge for 
on-line planning are computed in two waves: (i) the full data constraint for each feasible path to given trap 
labeled transition is computed using backward constraint propagation algorithm and the propagation stops 
when the constraint solving time exceeds its given bound; (ii) for each trap constraint and for each IUT 
model state unlabelled with data constraint constructed in (i) the gain function is computed based on 
control graph to evaluate the most promising direction to data constraint labeled states. As shown in 
(Vain, Raiend, Kull, & Ernits, 2007) the gain function construction complexity is , (  is the 
number of transitions in the tester model) and its practical usage feasible for testing embedded systems 
with bounded planning horizon (Kull, Raiend, Vain, & Käärameees, 2009).  
 
6  CONCLUSIONS AND FUTURE WORK 
In this chapter we proposed a model-based construction of an on-line planning tester for black-box testing 
of the IUT. The IUT is modelled in terms of an output observable non-deterministic EFSM. The tester 
synthesis was introduced at first using a restricted class of EFSM models of the IUT. That is motivated by 
the fact thatthere exists a transformation (although with very high complexity) from such EFSM to FSM 
(Henniger, Ulrich, & König, 1995). That are EFSM models were the variables have finite, countable 
domains and the data constraints are linear. The method comprises off-line static analysis phase and the 
on-line test planning and execution phase. As the result of the off-line analysis of the IUT model the data 
and control constraints for efficient on-line test planning are prepared. The generated constraints are used 
in on-line test guidance for generating IUT inputs to reach the test goal along sub-optimal paths. No costly 
model exploration and path finding operation is needed on-line.  

As an extension of the on-line planning tester synthesis method the test data constraint construction 
and solving was introduced. The experiments have been made to prove the feasibility of the RPT synthesis 
method on a case-study where the IUT is the well-known Inres protocol. The case study showed that 
deriving the constraints without the need to restrict the planning horizon is feasible, solving the constraints 
for test data generation is very efficient and the results allow to drive the IUT along the optimal paths to 
fulfill the test requirements. Also a case study of the model of stopwatch having deep loop counters have 
been tried successfully up to 1000 steps of search depth. The current results have been obtained by a tool 
which builds on top of the state of the art SMT-solver Z3 (Moura & Bjørner, 2008) using it for quantifier 
elimination, simplification, checking satisfiability, and solving the complex constraints. The experiments 
provide a good indication that the proposed method has a potential for the case studies of reasonable size 
where the on-line testing of non-deterministic systems is needed. 

Finally, the heuristics that improve the scalability of on-line planning for systems of industrial size and 
requiring tester’s bounded response time have been proposed. According to the heuristic, the planning 
horizon is determined strictly based on the time complexity of solving data constraints on-line. 
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6.1  Related Work 
For MBT a model that represents the IUT specification is required. Finite state machine (FSM) and 
extended finite state machine (EFSM) are commonly used for the purpose of test case derivation 
(Petrenko, Boroday, & Groz, 2004). An FSM can model the control flow of a system. In order to model a 
system which has both control and data parts, e.g., communication protocols, an extension is needed. Such 
systems are represented using an EFSM model (Kalaji, Hierons, & Swift, 2009). The EFSM model has 
been widely studied and many methods are available which employ different test data generation 
approaches (Lai, 2002; Lee & Yannakakis, 1996). Nevertheless, automated test data generation from 
EFSM model is complicated by the presence of infeasible paths and is an open research problem (Offutt & 
Hayes, 1996).  
In an EFSM model, a given path can be classified as either infeasible or feasible. The existence of some 
infeasible paths is due to the variable inter-dependencies among the actions and conditions. If a path is 
infeasible, there is no input test data that can cause this path to be traversed. Thus, if such a path is chosen 
in order to exercise certain transitions, these transitions are not exercised even if they can be exercised 
through other feasible paths (Kalaji, Hierons, & Swift, 2009). While the feasibility of paths is undecidable, 
there are several techniques that handle them in certain special cases (Offutt & Hayes, 1996; Chanson & 
Zhu, 1993; Hamon, Moura, & Rushby, 2004). 

MBT can be applied for both off-line and on-line generation of test cases. In case of on-line 
testing, the test generation procedure derives only one test input at a time from the model and feeds it 
immediately to the IUT as opposed to deriving a complete test case in advance like in off-line testing. In 
on-line testing, it is not required to explore the whole state space of the model of the IUT every time the 
test stimulus is generated. Instead, the decisions about the next actions are made by observing the current 
output of the IUT (Tretmans & Brinksma, 2002). However, on-line test execution requires more run-time 
resources for interpreting the model and choosing the test stimulus. The on-line testing methods differ in 
how the test purpose is defined, how the test stimuli are selected on-the-fly, and what is the planning effort 
behind each choice. 

The test purpose can be stated in very abstract way when applying conformance (IOCO or 
TIOCO) relation (Briones & Brinksma, 2004). Usually the conformance relation is tested using either a 
completely random or some heuristic driven state space exploration algorithm. A test stimulus at given 
state is selected randomly from the set of stimuli having uniform distribution of preference to trigger a 
next transitions of IUT model. Random choice has been used in early TorX tool (Belinfante, Feenstra, 
René, Vries, Tretmans, Goga, Feijs, Mauw, & Heerink, 1999), Uppaal-Tron (Larsen, Mikucionis, Nielsen, 
& Skou, 2005; Mikucionis, Larsen, & Nielsen, 2004) and also in the on-the-fly testing mode of 
SpecExplorer (Nachmanson, Veanes, Schulte, Tillmann, & Grieskamp, 2004). In (Feijs, Goga, & Mauw, 
2000), also the transition probabilities directed input selection method is introduced to TorX. More 
restrictive are the test goal-directed exploration algorithms that reduce the total number of states to be 
explored in a model. The goal-directed approach is stronger than random exploration in the sense of 
providing guidance towards a certain set of IUT execution sequences that cover so called test goal items 
(e.g., states or transitions in the IUT model). The goal-directed approach was introduced in (Ferguson & 
Korel, 1996; Korel & Al-Yami, 1996), used in testing tool elaborated in (Vries, 2001) and later used in 
TorX (Tretmans & Brinksma, 2003) and TGV (Jard & Jeron, 2005). 

Further advancement of test goal specification has been introduced in NModel (Veanes, 
Campbell, Schulte, 2007;  Veanes, Campbell, Grieskamp, Schulte, Tillmann, & Nachmanson, 2008) 
where the IUT model presented as a model program can be composed with test scenario models to restrict 
the sets of test sequences. An “anti-ant” heuristic (Li & Lam, 2005) (“anti-ant” heuristic prefers least 
visited edges while making a graph search) based algorithm of reinforcement learning (Veanes, Roy, & 
Campbell, 2006) is used to cover specified test sequences in the model program. 
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While distinguishing the on-the-fly test input selection methods by their planning effort, e.g., by 
the depth of planning horizon, the simplest and fastest method is random choice. The planning horizon of 
the random choice is zero steps ahead. Non-zero, but still short range planning is applied in anti-ant 
methods that try to avoid already executed test sequences. For selecting the next stimuli from the set of 
possible ones the anti-ant method takes the less used transition of the model. The planning horizon of the 
anti-ant algorithm is just 1 step ahead. The anti-ant heuristic-based state space exploration method is used 
in (Larsen, Mikucionis, Nielsen, & Skou, 2005), and (Li & Lam, 2005) to cover all transitions of the IUT 
model. 

The reactive planning testing approach introduced in this chapter is goal-directed like the methods 
used in TorX and TGV. The test goal in RPT can be stated also in the form of test scenario model like in 
NModel. For that, the tester model is constructed as synchronous parallel composition of the test scenario 
model and the IUT model. The test scenario model specifies the test coverage items (e.g., states, 
transitions), also the conditions and temporal order the coverage items need to be visited during the test 
run. The usage of test scenario models clearly increases the expressiveness of test goal specification 
language compared with simple trap set specification format. That allows stating dynamic resetting, 
partial order and repetitive visits of coverage items during the test run. 

When comparing the on-line testing methods by their planning capability, the methods can be 
ordered by their online planning depth. The RPT (Vain, Raiend, Kull, & Ernits, 2007) involves a planner 
that looks ahead more than one step at a time to reach still unsatisfied parts of the test purpose, whereas 
the anti-ant approach looks only one step ahead when selecting the least visited outgoing transition from a 
current state. While the random walk has planning horizon 0 steps ahead and “anti-ant” just 1 step ahead 
the planning horizon of RPT can be parametrically tuned. That allows to “see” the existence and direction 
of unattended test coverage items from other states of the model though the item itself can be behind the 
exact planning horizon yet. Moreover, the reactive planning tester is able to guide the model on-the-fly 
exploration towards still unexplored areas even in cases when they are “shielded” by the parts of the 
model already traversed. Because of the longer planning horizon RPT can result in shorter test sequences 
compared to random choice and anti-ant methods. 

The price to pay for shorter test cases is the complexity of the planning constraints to be solved 
on-line to guide the selection of test stimuli. The performance advantage of RPT over pure anti-ant and 
random choice methods depends on many factors, like model size and structural complexity, the degree of 
non-determinism, and the placement of coverage items in the model. Model size and complexity affect, in 
the first place, the size and complexity of the rules the RPT has to execute on-the-fly. Second, as the IUT 
specification model may be non-deterministic, it is impossible to predict exactly what paths appear to be 
more preferable in terms of the test length and how long time such test should take. Only under the 
fairness assumption all non-deterministic choices will be traversed eventually and the test purpose is 
potentially reachable. Thus, the degree of the non-determinism of the IUT model is a factor that can make 
the exhaustive or even deeper planning worthless. For instance, the planning may target to reach a 
coverage item behind some non-deterministic choice point in the IUT model but due to the 
non-determinism the reachability of the coverage item is not granted for the run of a given length. If there 
are many non-deterministic choices on the path to the next coverage item then the non-determinism can 
direct the test execution more likely to the paths other than those needed for reaching the test goal. 
Therefore, the distribution of coverage items in the model may affect the resulting test sequence length. 
Depending on the non-determinism handling strategy the test planning rules in RPT can prefer either 
potentially shorter paths to reach the test coverage items but including in the same time non-deterministic 
choices (“optimistic“ strategy), or alternatively, the deterministic paths that may be considerably longer 
but guarantee the reachability of test coverage items (“pessimistic” strategy). 

Tightly related with on-line test planning is the topic of test data generation that implement the 
intended test stimuli. The problem has been studied initially within the context of programs and specific 
programming language data types. With the advent of MBT the problem has been addressed in terms of 
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more abstract structures, e.g., EFSMs. Generally, the goal of test data generation is to find the input values 
to IUT that will guide the execution to reach the testing goals. This is achieved in two steps: (i) find the 
data constraint for some test goal related path, (ii) solve the path constraint in terms of input variables. The 
solution will then be a system of (in)equalities describing how input data should be formed in order to 
traverse the path (Edvardsson, 1999).  

Depending on the test coverage criteria the test data generation method can be either random 
generation, generating test data for an unspecific path, or generating test data for a specific path (Ferguson 
& Korel, 1996). These approaches are called respectively random, goal-oriented, and path oriented test 
data generation. Each of these generation methods can be implemented statically or dynamically 
(on-the-fly). Random testing relies on probability and has quite low chances in finding faults that are 
revealed by a small percentage of the program input (Offutt & Hayes, 1996), and thus accomplish high 
coverage. Since random testing is considered to be of the lowest acceptance rate it is often used as test 
data generation benchmark (Chang, Carlisle, Cross II, & Brown, 1991). The goal-oriented (-directed) 
approach is stronger in the sense of providing guidance towards a certain set of IUT execution sequences. 
It generates input that traverses some of the sequences that satisfies the test goal. Since the sequences are 
selected arbitrarily this reduces the risk of encountering infeasible (non-traversible) sequences and 
provides a way to direct the search for input values as well. For instance, two goal-oriented methods using 
this technique have been implemented in the system (Ferguson & Korel, 1996; Korel & Al-Yami, 1996): 

• Chaining approach uses data dependence to find solutions to branch predicates. For that a chain 
of nodes is identified that is necessary to the execution of the goal coverage item. The chain is 
built up iteratively during execution. Since it uses the “find-any-path” concept it is hard to predict 
the coverage given a set of goals. 
• Assertion-oriented approach is an extension of the chaining approach. It utilizes the 
goal-oriented generation in the following way: certain conditions (assertions) are inserted in the 
code either manually or automatically. When an assertion is executed it is supposed to hold, 
otherwise there is an error either in the program or in the assertion. The goal of assertion-oriented 
generation is to find any execution sequence to violate an assertion. The advantage of this method 
is that the test oracle is given in the code and there is no need for calculating the test data from 
some other source than the code. So called path-oriented generation does not provide the test data 
generator with a possibility of selecting among a set of test sequences, but just one specific. It is 
the same as a goal-oriented test data generation, except for the use of specific sequences. This 
leads to a better prediction of coverage. On the other hand, due to the more strict path constraint it 
is harder to find the test data. 
All test data generation methods listed above (except random testing) have to solve a path 

constraints (predicates). Due to the fact that symbolic constraint solving generally is undecidable, e.g., in 
case of programs with function calls, partial constraint satisfaction techniques are applied. Promising 
search methods are simulated annealing (Tracey, Clark, & Mander, 1998), and evolutionary algorithms 
(Kalaji, Hierons, & Swift, 2009) for their data type independence and iterative relaxation (Gupta, Mathur, 
& Soffa, 1998) for its predictability. As an alternative to static test data generation the dynamic 
approaches (Godefroid, Halleux, Nori, Rajamani, Schulte, Tillmann, & Levin, 2008; Derderian, Hierons, 
Harman, & Guo, 2010) do not suffer from undecidable constraints to the same extent as static methods. 
Dynamic test generation extends static test generation with additional run-time information, so it is more 
general and powerful. For instance, in a DART system (Godefroid, Halleux, Nori, Rajamani, Schulte, 
Tillmann, & Levin, 2008) directed search is applied. Each new input vector tries to force the program’s 
execution through some new path. By repeating this process, the directed search attempts to force the 
program to sweep through all its feasible execution paths, similarly to systematic testing and dynamic 
software model checking.  

An example of combining dynamic and static test generation is white box fuzz testing used in 
SAGE system (Godefroid, Levin, & Molnar, 2008). SAGE extends previous dynamic testing approaches 
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by using offline trace-based, rather than on-line, constraint generation. It handles also hard-to-control 
non-determinism in large target programs that makes debugging on-line constraint generation difficult. 
Thanks to offline analysis, constraint generation in SAGE is completely deterministic because it works 
with an execution trace that captures the outcome of all non-deterministic events encountered during the 
recorded run. As pointed out in cases of goal- and path oriented test data generation methods constructing 
the full path constraints, their simplification and run time solving is very complex task even in cases when 
they are decidable, e.g., in case of linear constraints on bounded finite data domains. 
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