
1

Online Testing of Nondeterministic
Systems with the Reactive Planning

Tester
Jüri Vain, Marko Kääramees, and Maili Markvardt
Department of Computer Science,
Tallinn University of Technology, Estonia
E-mail: vain@ioc.ee

ABSTRACT
We describe a model-based construction of an online tester for black-box testing. Contemporary
model-based online test generators focusing mainly on computationally cheap but far from optimal
planning strategies cover just a fraction of the wide spectrum of test control strategies. Typical examples
of those used are simple random choice and anti-ant. Exhaustive planning during online testing of
nondeterministic systems looks out of reach because of the low scalability of the methods in regard to the
model size. The reactive planning tester (RPT) studied in the chapter is targeted to fill the gap between
these two extremes. The key idea of RPT lies in offline static analysis of the IUT model to prepare the
data and constraints for efficient online reactive planning. The external behavior of the IUT is modelled as
an output observable nondeterministic EFSM with the assumption that all transition paths are feasible. A
test purpose is attributed to the transitions of the IUT model by a set of Boolean variables called traps that
are used to measure the progress of the test run. We present a way to construct a tester that at runtime
selects a suboptimal test path from trap to trap by finding the shortest path that covers unvisited traps
within planning horizon. The principles of reactive planning are implemented in the form of the decision
rules of selecting the shortest paths at runtime. Based on an industrial scale case study, namely the city
lighting system controller, we demonstrate the practical use of the RPT for systems with high degree of
nondeterminism, deep nested control loops, and requiring strictly bounded tester response time. Tuning
the planning horizon of the RPT allows a trade-off to be found between close to optimal test length and
scalability of tester behavior with computationally feasible expenses.

1 INTRODUCTION
Model-Based Testing is the automatic generation of efficient test procedures/vectors using models of
system requirements and specified functionality. Specific activities of the practice are (1) Build the model,
(2) Generate expected inputs (3) Generate expected outputs, (4) Run tests, (5) Compare actual outputs
with expected outputs, and (6) Decide on further actions (whether to modify the model, generate more
tests, or stop testing, estimate reliability (quality) of the software (DACS Gold Practice Website, 2010).

1.1 On-line Testing

On-line testing is widely considered to be the most appropriate technique for model-based testing (MBT)
of embedded systems where the implementation under test (IUT) is modelled using nondeterministic
models (Veanes, Campbell, & Schulte, 2007; Veanes, Campbell, Grieskamp, Schulte, Tillmann, &
Nachmanson, 2008). Nondeterminism of IUT models stems from the physical nature of the IUT,

2

particularly, its internal parallel processes, timing conditions, and hardware-related asynchrony of
executing the processes. Other sources of model nondeterminism are the higher abstraction level of the
model compared to IUT implementation and the ambiguities in the specifications of the IUT. Often, the
term on-the-fly is used in the context of on-line testing to describe the test generation and execution
algorithms that compute and send successive stimuli to IUT incrementally at runtime. Computation of test
stimuli is directed by the test purpose and the observed outputs of the IUT.

The state-space explosion problem experienced by many model-based offline test generation methods is
avoided by the on-line techniques because only a limited part of the state-space needs to be kept track of
at any point in time when a test is running. However, exhaustive planning would be difficult on-the-fly
because of the limitations of available computational resources at the time of test execution. Thus,
developing a planning strategy for industrial strength online testing should address in the first place the
trade-off between reaction time and on-line planning depth to reach the practically feasible test cases.

The simplest approach to on-the-fly selection of test stimuli in model-based on-line testing is to apply so
called random walk strategy where no computation sequence of IUT has an advantage over the others.
The test is performed usually to discover violations of input/output conformance relation IOCO
(Tretmans, 1999) or timed input/output conformance relation TIOCO (Brinksma & Tretmants, 2001)
between the IUT and its model. Random exploration of the state space may lead to test cases that are
unreasonably long and nevertheless may leave the test purpose unachieved. On the other hand, the long
test cases are not completely useless, some unexpected and intricate bugs that do not fit under
well-defined test coverage criteria can be detected when a test runs hours or even days.

In order to overcome the deficiencies of long lasting testing usually additional heuristics, e.g. “anti-ant”
(Li & Lam, 2005; Veanes, Roy, & Cambell, 2006), dynamic approach of DART system (Godefroid,
Halleux, Nori, Rajamani, Schulte, Tillmann, & Levin, 2008), inserted assertions (Korel & Al-Yami,
1996), path fitness (Derderian, Hierons, Harman, & Guo, 2010), etc. are applied for guiding the
exploration of the IUT state space. The extreme of guiding the selection of test stimuli is exhaustive
planning by solving at each test execution step a full constraint system set by the test purpose and test
planning strategy. For instance, the witness trace generated by model checking provides possibly optimal
selection of the next test stimulus. The critical issue in the case of explicit state model checking algorithms
is the size and complexity of the model leading to the explosion of the state space, specially in cases such
as “door lock behavior“ or deep nested loops in the model (Hamon, Moura, & Rushby, 2004). Therefore,
model checking based approaches are used mostly in offline test generation.

In this chapter we introduce the principle of reactive planning for on-the-fly selection of test stimuli and
the reactive planning tester (RPT) synthesis algorithm for offline construction of those selection rules.The
RPT synthesis algorithm assumes that the IUT model is presented as an output observable
nondeterministic state machine (Luo, Bochmann, & Petrenko, 1994; Starke, 1972). At first, the synthesis
method is introduced for extended finite state machine (EFSM) models of IUT in which all transition
sequences are feasible and the EFSM can be transformed to ordinary finite state machine (FSM) model. In
(Duale & Uyar, 2004; Hierons, Kim, & Ural, 2004) it has been shown how to transform an EFSM to one
that has no infeasible paths. This has been achieved only for EFSMs in which all variable updates and
transition guards are linear. In general, the problem of determining whether a path in an EFSM is feasible
is undecidable. Therefore, we limit our approach to EFSMs which have only linear updates and transition
guards. Later on, in Section 3.4, the synthesis algorithm will be generalised to tackle with EFSM models
without the paths feasibility constraint. As will be shown using experimental results in the end of the
chapter the reactive planning paradigm appears to be a practical trade-off between using simple heuristics
and exhaustive planning in on-line model-based testing.

3

2 PRELIMINARIES OF ON-LINE TESTING WITH MODEL-BASED PLANNING
2.1 Reactive Model-Based Planning in Testing
The concept of a reactive planning as presented in (Williams & Nayak, 1997) is motivated by the need for
model-based autonomy in applications which must cope with highly dynamic and unpredictable
environments. Reactive planning operates in a timely fashion and is applicable in agents operating in these
conditions (Lyons & Hendriks, 1992). Reactiveness of on-line testing means that tester program has to
react to observed outputs of the IUT and to possible changes in the test goals on-the-fly. It tries to take the
system towards the state that satisfies the desired test goals. Like generally in reactive planning, the
model-based test executive uses a formal specification of the system to determine the desired state
sequence in three stages - mode identification (MI), mode reconfiguration (MR) and model-based reactive
planning (MRP) (Williams & Nayak, 1997). MI and MR set the planning problem, identifying initial and
target states, while MRP reactively generates a plan soluion. MI is a phase where the current state of the
system model is identified. In the case of a deterministic model transition, MI is trivial, it is just the next
state reachable by applying the right IUT input. In the nondeterministic case, MI can determine the current
state by looking at the output of the system provided the output is observable. In the current approach, the
MR and the MRP phases are combined into one since both the goal and the next step toward the goal are
determined by the same decision procedure as will be explained in detail in Section 3.5.1. Selection of
IUT inputs taking closer to satisfying the test goal is based on the cost of applying a given input. Further,
we characterize this cost using the so called gain function.

The rationale behind the reactive planning method proposed in this approach lies in combining
computationally hard offline planning with time bounded online planning phases. Off-line phase is meant
to shift the combinatorially hard planning as much as possible in test preparation phase where the results
of static analysis of given IUT model and the test goal are recorded in the format of compact planning
rules that are easy to apply later in on-line phase. While the reactive planning tester is synthesised, the
rules are encoded in the tester model and applied when the test is running. Thus, the rules synthesized
must ensure also proper termination of the test case when a prescribed test purpose is satisfied.

2.2 Model-Based Testing with EFSMs
In this approach, we assume that the IUT model is represented as output observable EFSM. A test purpose
(or goal) is a specific objective or a property of the IUT that the tester is set out to test. Test purpose is
specified in terms of test coverage items. We focus on test purposes that can be defined as a set of “traps”
associated with the transitions of the IUT model (Hamon, Moura, Rushby, 2004). The goal of the tester is
to generate a test sequence so that all traps are visited at least once during the test run.

The proposed tester synthesis method outputs also the tester model as EFSM where the rules for online
planning are encoded in the transition guards as a conjuncts called gain guard. The gain guard evaluates
true or false at the time of the execution of the tester determining if the transition can be taken from the
current state or not. The value true means that taking the transition with the highest gain is the best
possible choice to reach some unvisited traps from the current state. Since at each execution step of the
tester model only the guards associated with the outgoing transitions of the current state are evaluated, the
number of guard conditions to be evaluated at once is relatively small. To implement such a gain guided
model traversal, the gain guard is defined using (model and goal specific) gain functions and the standard
function max over the gain function values. The gain functions define the gain that is a quantitative
measure needed to compare alternative choices of test stimuli on-the-fly. For each transition of the tester
model that generates a stimulus, that can be chosen by test executive, a non-negative gain function is
defined that depends on the current bindings of the EFSM context variables. The gain function of a
transition defines a value that depends on the distance-weighted reachability of the unvisited traps from
the given transition. The gain guard of the tester’s model transition is true if and only if that transition is a

4

prefix of the test sequence with highest gain among those that depart from the current state. If gain
functions of several enabled transitions evaluate to the same maximum value the tester selects one of these
transitions using either random selection or “least visited first” principle. Each transition in the model is
considered to have a weight and the cost of test case is proportional to the length of whole test sequence.
Also, the current value (true when visited, otherwise false) of each trap is taken into account in gain
functions.

2.3 Extended Finite State Machine
The synthesis of the RPT-tester is based on a non-deterministic EFSM model of the IUT.

Definition 1: An extended finite state machine, is defined as a tuple , where is a
finite set of states, is an initial state, is a finite set of variables with finite value domains, is
the finite set of inputs, is the finite set of outputs, and is the set of transitions. A configuration of
is a pair where and is a mapping from to values, and is a finite set of
mappings from variable names to their possible values. The initial configuration is , where

 is the initial assignment. A transition is a tuple , where is the
source state of the transition, is the target state of the transition , is a transition guard that
is a logic formula over , is the input of , is the output of , and is an
update function over .

A deterministic EFSM is an EFSM where the output and next state are unambiguously determined by
the current state and the input. A nondeterministic EFSM may contain states where the reaction of the
EFSM in response to an input is nondeterministic, i.e. there are more than one outgoing transitions that are
enabled simultaneously.

2.4 Modelling the IUT

Denote the EFSM model of IUT by . It can be either deterministic or nondeterministic, it can be
strongly connected or not. If the model is not strongly connected then we assume that there exists a
reliable reset that allows the IUT to be taken back to the initial state from any state. Since there exists a
transformation from EFSM to FSM (Henniger, Ulrich, & König, 1995) for EFSM models were the
variables have finite, countable domains, we present the further details of RPT synthesis method at first
using simpler FSM model notation. In practice this leads to a vast state space if we use FSMs even for a
small system. Though, as will be demonstrated in Section 3.6 by means of RPT and adjustable planning
horizon a FSM based test synthesis method can also scale well to handle industrial size testing problems.
The transformation from EFSM to FSM is automatic in the method implementation (TestCast Generator
Website, 2010) and hidden from the user.

It is essential that the tester can observe the outputs of the IUT for detecting the next state after a
nondeterministic transition of the IUT. Therefore, we require that a nondeterministic IUT is output
observable (Luo, Bochmann, & Petrenko, 1994; Starke, 1972) which means that even though there may
be multiple transitions taken in response to a given input, the output identifies the next state of IUT
unambiguously. An example of an output observable nondeterministic IUT model is given in Figure 1.
The outgoing transitions and and of the state have the same input , but
different outputs or or .

5

Figure 1: An output observable nondeterministic IUT model

2.5 Modelling the Test Purpose
A test purpose is a specific objective or a property of the IUT that the tester is set out to test. In general,
test purposes are selected based on the correctness criteria stipulated by the specification of the IUT. The
goal of specifying test purposes is to establish some degree of confidence that the IUT conforms to the
specification. In model-based black-box testing the formal model of the IUT is derived from its I/O
specification and is the starting point of the automatic test case generation. Therefore, it should be possible
to map the test purposes derived from the specifications of the IUT into test purposes defined in terms of
the IUT model. Examples of test purposes are “test a state change from state A to state B in a model“,
“test whether some selected states of a model are visited“, “test whether all transitions in a model are
visited at least once“, etc. All of the test purposes listed above are specified in terms of the structural
elements (coverage items) of the model that should be traversed (covered) during the execution of the test.

For synthesising a tester that fulfills a particular test purpose we extend the original model of the IUT
with so called traps. The traps are attached to the transitions of the IUT model and they can be used to
define which model elements should be covered by the test. Signaling about a trap traversal is
implemented by means of trap predicate (in case of FSM just by a Boolean trap variable) and trap update
functions. A trap is initially set to . The trap update functions are attached to the trap labeled
transitions and computed when the transition is executed in the course of the test run. They set the traps to

 which denotes that the traps are covered.
The extended model of the IUT, is a tuple . The extended set of variables
 includes variables of the IUT and the trap variables (), where is a set of trap

variables. is a set of transitions where each element of is a tuple , where is a
transition guard that is a logic formula over , and is an update function over . For the sake of
brevity we further denote the model of the IUT that is extended with trap variables also by .

Figure 2 presents an example where the IUT model given in Figure 2 is extended with trap variables.
The example presents a visit all transitions test purpose, therefore the traps are attached to all transitions,

. In this example and , for each transition ,
.

6

Figure 2: IUT model extended with trap variables.

2.6 Model of the Tester
The tester model is synthesised from the IUT model that is decorated with traps and their
updates. The control structure of is derived from the structural elements of – states, transitions,
variables, and update functions. We synthesise a tester EFSM as a tuple ,
where is the set of tester states, is the set of tester variables, is the set of tester inputs, is
the set of tester outputs and is the set of tester transitions. Necessary condition for the IO
conformance of and is that their IO alphabets comply, and , and the set of
context variables of the tester is equal to the set of the context variables of the extended IUT model
().

The tester has two types of states - active and passive. The set of active states ()
includes the states where the tester has enabled transitions and by output functions of these transitions the
tester selects stimuli to IUT, i.e., controls the test execution. The set of passive states ()
includes the states of where the tester is ready to receive reactions from IUT. The transitions
of the tester automaton are defined by a tuple , where is a transition guard
that is a formula of logic over and is an update function over . We distinguish observable and
controllable transitions of the . An observable transition is a transition with a passive source state.
It is defined by a tuple , where is a passive state, the transition
is always enabled (), and it does not generate any output symbol. A controllable transition
is a transition with an active source state of the . It is defined by a tuple

, where is an active state, the transition needs not receiving an
input symbol, is a guard of constructed as a conjunction of the corresponding
guard of the extended IUT model and the gain guard .

The purpose of the gain guard is to guide the execution of so that in each state only the
outgoing transition is enabled that is a prefix of a path with maximum gain. In other words, the gain
guards enable transitions that are the best in the sense of the path length from the current state towards
fulfilling a still unsatisfied subgoal of the test purpose. We construct the gain guards offline by
analysing reachability of traps from each transition of . The gain guards take into account the number
and distance-weighted reachability (gain) of still unvisited traps. The tester model can be
non-deterministic in the sense that when there are many transitions with equal positive gain, the selection
of the transition to be taken next is made either randomly from the best choices or by the principle “Least
visited first”.

7

3 SYNTHESIS OF ON-LINE PLANNING TESTER FOR FSM MODELS OF IUT

3.1 Synthesis of On-Line Planning Tester in Large
We describe the tester synthesis procedure at first based on the FSM model of IUT. The test purpose is
expressed in terms of trap variable updates attached to the transitions of the IUT model. We also introduce
the parameters that define the RPT planning constraints.

The RPT synthesis comprises three basic steps (Figure3): (i) extraction of the RPT control structure,
(ii) constructing gain guards that includes also construction of gain functions, and (iii) reduction of gain
guards according to the parameter “planning horizon” that defines the depth of the reachability tree to be
pruned.

Figure 3: RPT synthesis workflow

In the first step, the RPT synthesiser analyses the structure of the IUT model and generates the RPT
control structure. In the second step, the synthesizer finds possibly successful IUT runs regarding the test
goal. The tester should make its choice in each current state based on the structure of the tester model and
the bindings of the trap variables representing the test goal. The decision rules for on-the-fly planning are
derived by performing reachability analysis from the current state to all trap-equipped transitions by
constructing the shortest path trees. The decision rules are defined for controllable-by-tester transitions of
the model and are encoded in transition guards as conjuncts called gain guards. The gain functions that are
terms in the decision constraints are derived from the reduced shortest path trees (RSPT) on IUT dual
automaton. A shortest-paths tree is constructed for each controllable transition. The root vertex of the tree
corresponds to the controllable transition being characterised with the gain function, other vertices present
transitions equipped with traps. In case there are branches without traps in the tree that terminate with
terminals labelled with traps, the branches are substituted with hyper-edges having weights equal to the
length of that branch. By the given construction the RSPT represents the shortest paths from the root
transition it characterises to all reachable trap-labelled transitions in the tester model. The gain function
also allocates weights to the traps in the tree, and closer to the root transition the higher weight is given to
the trap. Thus, the gain value decreases after each trap in the tree gets visited during the test execution.

Since the RSPT on IUT dual automaton has the longest branch proportional to the length of Euler’s
contour on that automaton graph the gain function’s recurrent structure may be very complex. Last step of
the synthesis reduces the gain functions pruning the RSPT up to some depth that is defined by parameter
“planning horizon”. In Sections 3.2 to 3.5 the RPT synthesis steps are described in more detail.

8

3.2 Deriving the Control Structure of the Tester
The tester model is constructed as a dual automaton of the IUT model where the inputs and outputs are
inverted. The tester construction algorithm, Algorithm 1, has the following steps. The states of the IUT
model are transformed into the active states of the tester model in step 1. For each state of the IUT, the
set of outgoing transitions is processed in steps 2 to 5. Each transition of the IUT model is split
into a pair of consecutive transitions in the tester model - a controllable transition and an
observable transition , where and are respectively the subset of controllable and subset
of observable transitions of the tester model. A new intermediate passive state is added between them
(steps 6 – 8 of Algorithm 1).

Let denote the subset of the nondeterministic outgoing transitions of the state where

the IUT input is and the guard is . The algorithm creates one controllable transition for each set
from state s to the passive state sp of the tester model (step 7). The controllable transition

does not have any input and the input of the corresponding transition of the IUT becomes an output of .
For each element a corresponding observable transition is created in steps 8 and

14, where the source state of is replaced by , the guard is set to and the output of the IUT
transition becomes the input of the corresponding tester transition.

The processed transition of the IUT is removed from the set of outgoing transitions (step
9). From the unprocessed set the subset of remaining nondeterministic transitions

9

with the same input and a guard equivalent to is found (step 10). For each an
observable transition is created (steps 12-16).

The gain functions for all controllable transitions of the tester are constructed using the structure of the
tester (steps 19–21). Finally, for each controllable transition, a gain guard is constructed (step 24)
and the conjunction of and the guard of is set to be the guard of the corresponding transition
of the tester (step 25).

The details of the construction of the gain functions and gain guards are discussed in the next
subsection.

An example of the tester EFSM created by Algorithm 1 is shown in Figure 4. The active states of the
tester have the same label as the corresponding states of the IUT and the passive states of the tester are
labelled with . The controllable (observable) transitions are shown with solid (dashed) lines.
For example, the pair of nondeterministic transitions of the IUT (see Figure 1) produces one
controllable transition and two observable transitions from the passive state of the tester.

For this example , where is the set of trap variables. For example, in Figure 4,
denotes the gain guard of the tester transition . Gain guards attached to the controllable transitions of the
tester (for example ,) guide the tester at runtime to choose the next transition depending on
the current trap variable bindings in .

Figure 4: The EFSM model of the tester for the IUT in Figure 1

3.3 Constructing the Gain Guards of Transitions
A gain guard of a controllable transition of the tester is constructed to meet the following
requirements:

• The next move of the tester should be locally optimal with respect to achieving the test purpose
from the current state of the tester.

10

• The tester should terminate after all traps are achieved or all unvisited traps are unreachable from
the current state.

The gain guard evaluates to or at the time of the execution of the tester determining if the
transition can be taken from the current state or not. The value means that taking the transition is the
best possible choice to reach unvisited traps from the current state. The tester makes its choice in the
current state based on the structure of the tester model, the bindings of the trap variables representing the
test purpose, and the current bindings of the context variables. We need some measure of quantitative
benefit to compare different alternative choices. For each controllable transition , where is the
set of all controllable transitions of the tester model, we define a non-negative gain function that
depends on the current bindings of the context variables. The gain function has the following properties:

• , if taking the transition from the current state with the current variable bindings does
not lead closer to any unvisited trap. This condition indicates that it is useless to fire the transition e
 (P1)

• , if taking the transition from the current state with the current variable bindings visits
or leads closer to at least one unvisited trap. This condition indicates that it is useful to fire the
transition . (P2)

• For transitions and with the same source state, , if taking the transition ei
leads to an unvisited trap with smaller cost than taking the transition ej. This condition indicates
that it is cheaper to take the transition ei rather than ej to reach the unvisited traps.
 (P3)

A gain guard for a controllable transition with the source state of the tester is defined as

 (1)

where denotes the value of the gain function of the transition , where is
the set of outgoing transitions of the state .

The first predicate in the logical formula (1) ensures that the gain guard is if and only if it is the
guard of the transition that leads to some unvisited trap from the current state with the highest gain
compared to the gains of the other outgoing transitions of the current state. The second conjunct blocks
test runs that do not serve the test purpose, i.e. it evaluates to when all unvisited traps from the
current state are unreachable or all traps are visited already.

3.4 Gain Function
In this subsection, we describe how the gain functions are constructed. The required properties of a gain
function were specified in the previous subsection (P1 - P3). Each transition of the IUT model is
considered to have unit weight and the cost of the test case is proportional to the length of the test
sequence(s) that cover all traps. The gain function of a transition computes a value that depends on the
distance-weighted reachability of the unvisited traps from the given transition.

For the sake of efficiency, we implement a heuristic in the gain function that favors the selection of the
path that visits more unvisited traps and is shorter than the alternative ones. Intuitively, in the case of two
paths visiting the same number of transitions with unvisited traps and having the same lengths the path
with more traps closer to the beginning of the path is preferred.

In this subsection, denotes the tester model equipped with trap variables and
 is a transition of the tester. We assume that the trap variable is initialised to and set

to by the trap update function associated with the transition . Therefore, reaching a trap is

11

equivalent to reaching the corresponding transition. A transition is reachable from the transition if
there exists a path on the reachability tree of the model such that . For time being
we ignore transition guards defined on context variables of the EFSM models.

Shortest-Paths Tree
In order to find the reachable transitions from a given transition we reduce the reachability problem of the
transitions to a single-source shortest paths problem of a graph (Cormen, 2001). We create a dual graph

 of the tester model as a graph where the vertices correspond to the transitions of the
EFSM of the tester, . The edges of the dual graph represent the pairs of subsequent
transitions sharing a state in the tester model. If the transition of the tester model is an incoming
transition of a state and the transition is an outgoing transition of the same state, there is an edge

 in the dual graph from vertex to vertex , .
The analysis of the transition sequences of the tester model is equivalent to the analysis of the

paths of vertices in the dual graph . In Figure 5, there is the dual graph of the tester model depicted in
Figure 4. For example, after taking the transition in Figure 4, it is possible that either or
follows. In the dual graph in Figure 5, this is represented by the existence of the edges to and from
the vertex .

Figure 5: The dual graph of the tester model in Figure 4

In the dual graph, the shortest-paths tree from is a tree with the root that contains the shortest paths to
every other vertex that is reachable from . The shortest-paths tree with the root derived from the graph

 is denoted by . The shortest-paths tree from a given vertex of the dual graph can be found
using known algorithms from the graph theory. Running a single source shortest-paths algorithm
times results in the shortest paths from each controllable transition to every reachable transition.

The dual graph is an unweighted graph (in this paper we assume that all transitions are uniformly
priced). The breadth-first-search algorithm (see, for example (Cormen, 2001)) is a simple shortest-paths
search algorithm that works on unweighted graphs. For a vertex of the dual graph the algorithm
produces a tree that is the result of merging the shortest paths from the vertex to each vertex reachable
from it. As we constructed the dual graph in a way that the vertices of the dual graph correspond to the
transitions of the tester model, the shortest path of vertices in the dual graph is the shortest sequence of
transitions in the tester model. Each shortest path contains only distinct vertices. Note that the shortest
paths and the shortest-paths trees of a graph are not necessarily unique.

12

The tree represents the shortest paths from to all reachable vertices of . We assume
that the traps of the IUT model are initialised to and a trap variable is set to by an update
function associated with the transition of the IUT model. Therefore, the tree represents
also the shortest paths starting with the vertex to all reachable trap assignments. Not all transitions of
the tester model contain trap variable update functions. To decide the reachability of traps by the paths in
the tree it suffices to analyse the reduced shortest-paths tree (RSPT), denoted by .
RSPT includes the root vertex and only such vertices of that contain trap
updates. We construct by replacing those sub-paths of that do not include trap
updates by hyper-edges. A hyper-edge denotes the shortest sub-path between two vertexes and in the
shortest-paths tree such that and are labelled with trap assignments and any other vertex on that path
is not. Thus, the reduced shortest-paths tree contains the shortest paths from root to all
reachable transitions labelled with trap updates in the dual graph . In we label each vertex
that contains a trap variable update by the corresponding trap and replace each sub-path containing
vertices without trap updates by a hyper-edge where is the label of the origin vertex, is
the label of the destination vertex and is the length of that sub-path. Also, during the reduction we
remove those sub-paths (hyper-edges) that end in the leaf vertices of the tree that do not contain any trap
variable updates.

Figure 6 (left) shows the shortest-paths tree with the root vertex for the dual graph
in Figure 5. For example, the path from the root vertex to the vertex in the
shortest-paths tree in Figure 6 is the shortest sequence of transitions beginning with the transition that
reaches in the example of the tester model in Figure 4.

Figure 6: The shortest-paths tree (left) and the reduced shortest-paths tree
(right) from the transition of the graph shown in Figure 5

The reduced shortest-paths tree from the vertex to the reachable traps of the dual
graph in Figure 5 is represented in Figure 6 (right). All vertices except the root of the reduced
shortest-paths tree are labelled with the trap variables, and the hyper-edges between the
vertices are labelled with their weights. The tree contains the shortest paths beginning with
the transition to all traps in the tester model in the Figure 4. For example, the tree shows
that there exists a path beginning with the transition to the trap , and this path visits traps and
on the way.

13

Algorithm for Constructing the Gain Function
The return type of the gain function is non-negative rational . That follows explicitly from the

construction rules of the gain function (see steps below) and from the fact that the corpus of rational
numbers is closed under addition and the operator. The gain function construction algorithm for
transition of the tester automaton (having dual graph) is following:

1. Construct the shortest-paths tree for the transition of the dual graph of the tester
control graph.

2. Reduce the shortest-paths tree as described in subsection

3.4 (the reduced tree is denoted by): Compute the lengths of the minimal trap-free
sub-paths between pairs of trap-labelled vertexes and of and substitute these
sub-paths with hyper-edges labelled with weight .

3. Represent the reduced tree as a set of elementary sub-trees of height 1, where each
elementary sub-tree is specified by the production rule of the form

 (2)

where the non-terminal symbol denotes the root vertex of the sub-tree and each (where
) denotes a leaf vertex of that sub-tree, is the branching factor, and

corresponds to the root vertex of the reduced tree .
4. Rewrite the right-hand sides of the productions constructed in step 3 as arithmetic terms, thus

getting the production rule in the form

 (3)

where denotes the trap variable of lifted type , is a constant for the scaling of the
numerical value of the gain function, and the distance between vertexes and in the
labelled tree . The distance is defined by the formula

where is the number of hyper-edges on the path between and in and is the
value of the weight corresponding to the concrete hyper-edge.

5. For each symbol denoting a leaf vertex in define a production rule:

 (4)

6. Apply the production rules (3) and (4) starting from the root symbol of until all
non-terminal symbols are substituted with the terms that include only terminal symbols and

, (, where is the number of trap variables in). The root vertex
 of the labelled tree may not have a trap label. Instead of a trap variable , we

use a constant as the label resulting in the rule (3).

14

Table 1: Application of the production rules to the elementary sub-trees of height 1 of the reduced
shortest-paths tree

Table 2: Gain functions of the controllable transitions of the tester model

It has to be pointed out that the gain function characterizes the expected gain only within the planning
horizon. The planning horizon is determined by the maximum length of the paths in the reduced
shortest-paths tree.

Table 1 shows the results of the application of the production rules (2), (3) and (4) to the vertexes of
the reduced shortest-paths tree in Figure 6 (right). As the root is not labelled with a trap
variable, the transition does not update any trap, a constant is used in the production rule (3) in
the place of the trap variable resulting in the first row of Table 1. Application of the

Kasutaja
Line

Kasutaja
Line

15

production rules (3) and (4) to the tree starting from the root vertex results in the gain
function given in the first row of Table 2. Table 2 presents the gain functions for the controllable
transitions of the tester model (Figure 4). The gain guards for all controllable transitions of the tester
model are given in Table 3. The type lifting functions of the traps have been omitted from the tables for
the sake of brevity.

Table 3: Gain guards of the transitions of the tester model

3.5 Adjustable Planning Horizon
Since the gain functions are constructed based on RSPTs their complexity is in direct correlation with the
size of RSPT. In that way, the all transitions coverage criterion sets the number of traps equal to the
number of transitions in the IUT model. Considering the fact that the number of transitions in the
full-scale IUT model may reach hundreds or even more, the gain functions generated using RSPTs may
grow over a size feasible to compute at test execution time. To keep the on-line computation time within
acceptable limits RSPT pruning is added to the RPT synthesis technique. The planning horizon defines the
depth of the RSPT to be pruned. Although the pruning of RSPT makes on-line planning incomplete it
makes the RPT method fully scalable regardless of the size of IUT model and the test goal. Moreover,
there is an option to set the planning horizon automatically offline when specifying the upper limit to the
size of RSPT pruned. Pruning of RSPT reduces the resolution capability of RPT gain functions. In order
to resolve the potentially rising priority conflicts between transitions having equal maximum gain values,
RPT uses either random or anti-ant choice mechanisms. Both conflict resolution approaches are
demonstrated on the City Lighting Controller case study and details discussed in Section 5.4.

3.6 Complexity of Constructing the Tester Based on EFSM Models with
Feasibility Assumption
The complexity of the synthesis of the reactive planning tester based on EFSM models of IUT where all
paths are feasible is determined by the complexity of the construction of the gain functions. For each gain
function the complexity of finding the shortest-paths tree for a given transition in the dual graph of the

Kasutaja
Line

Kasutaja
Pencil

16

tester model by breadth-first-search is (Cormen, 2001), where is the
number of transitions and is the number of transition pairs of the tester model. The number of
transition pairs of the tester model is mainly defined by the number of transition pairs of the observable
and controllable transitions which is bounded by . For all controllable transitions of the tester the
upper bound of the complexity of the offline computations of the gain functions is .

At runtime each choice by the tester takes no more than arithmetic operations to evaluate
the gain functions for the outgoing transitions of the current state.

4 PERFORMANCE EVALUATION OF RPT USING CASE STUDY EXPERIMENTS
The experiments are made to prove the feasibility of the RPT method and to compare its performance with
the random choice and anti-ant methods using an industry scale case study.

4.1 The Case Study
The testing case study developed under the ITEA2 D-MINT project (ITEA2 project “Deplyment of
Model-Based Technologies to Industrial Testing” Website, 2010) evaluates the model-based testing
technology in the telematics domain. The IUT of the case study is a Feeder Box Control Unit (FBCU) of
the street lighting control system. The most important functionality of the FBCU is to control street
lighting lamps either locally, depending on the local light sensor and calendar, or remotely from the
monitoring centre. In addition, the controller monitors the feeder box alarms and performs power
consumption measurements. The communication between the controller and monitoring centre is
implemented using GSM communication. The RPT performance evaluation experiments are performed on
the powering up procedure of the FBCU.

4.2 Model of the IUT
The model implements the power-up scenario of the FBCU. The strongly connected state model of the
FBCU includes 31 states and 78 transitions. The model is non-deterministic. Pairs of non-deterministic
transitions depart from seven states of the model and a triple of non-deterministic transitions departs from
one state of the model. The minimum length of the sequences of transitions from the initial state to the
farthest transition is 20 transitions, i.e. the largest depth of the RSPT for any transition is 20. The model is
similar to the model of well known digital door lock example that has several nested loops. There are
several possibilities to fall from the successful scenario back to the first states if something goes wrong in
the scenario.

4.3 Planning of Experiments
In order to demonstrate the algorithms in different test generation conditions we varied the test coverage
criterion. The tests were generated using two different coverage criteria - all transitions and a single
selected transition. The single transition was selected to be the farthest one from the initial state. The
location of the single transition was selected on the limit of the maximum planning horizon. Different
RPT planning horizons (0 to 20 steps) were used in the experiments. In case the RPT planning resulted in
several equally good subsequent transitions in the experiment with the selected coverage criterion and
planning horizon we used alternatively the anti-ant and random choice methods for choosing the next
transition. If the planning horizon is zero then RPT works like pure random choice or anti-ant method
depending on the option selected in the experiment.

As a characteristic of scalability we measured the length of test sequences and time spent on-line on
each planning step. The planning time is indicative partially only because it depends on the performance
of the RPT executing platform. Still, those measurements give some hints about the scalability of the

17

method with respect to the planning horizon. In addition to the non-deterministic model there is always a
random component involved in the RPT planning method. Therefore we performed all experiments in
series of 30 measurements and calculated averages and standard deviations over the series.

4.4 Results and Interpretation of the Experiments
The experiments are summarized in Table 4 and in Table 5. The lengths of the test sequences are given in
the form average ± standard deviation of 30 experiments. The results in the first row of Table 4 and Table
5 with planning horizon 0 correspond to the results of the pure anti-ant and random choice methods. For
estimation of the minimum test sequence length we modified the examined non-deterministic model to the
corresponding deterministic model with the same structure. Eliminating the non-determinism in the model
by introducing mutually exclusive transition guards and using the maximum planning horizon 20 the
reactive planning tester generated the test sequence with length 207 for “all transitions” coverage criteria
on the modified deterministic model. The minimum length of the test sequence to reach the “single
selected transition” was 20 steps.

Table 4: Average lengths of the test sequences satisfying the “all transitions” test purpose

Length of planning horizon
(number of steps)

anti-ant random choice

0 18345 ± 5311 44595 ± 19550
1 18417 ± 4003 19725 ± 7017
2 5120 ± 1678 4935 ± 1875
3 4187 ± 978 3610 ± 2538
4 2504 ± 815 2077 ± 552
5 2261 ± 612 1276 ± 426
6 2288 ± 491 1172 ± 387
7 1374 ± 346 762 ± 177
8 851 ± 304 548 ± 165
9 701 ± 240 395 ± 86
10 406 ± 102 329 ± 57
11 337 ± 72 311 ± 58
12 323 ± 61 284 ± 38
13 326 ± 64 298 ± 44
14 335 ± 64 295 ± 40
15 324 ± 59 295 ± 42
16 332 ± 51 291 ± 52
17 324 ± 59 284 ± 32
18 326 ± 66 307 ± 47
19 319 ± 55 287 ± 29
20 319 ± 68 305 ± 43

The experiment shows that the reactive planning tester with maximum planning horizon results on average
in a test sequence many times shorter and a considerably lower standard deviation than the anti-ant and
random choice tester. For the test goal to cover all transitions of the non-deterministic model the RPT
generated an average test sequence 1.5 times longer than the minimum possible sequence. The difference
from the optimum is mainly due to the non-determinism of the model. Compared to the RPT with the
maximum planning horizon the anti-ant and random choice tester generated test sequences that were on
average 57 and 146 times longer, respectively.

18

Table 5: Average lengths of test sequences satisfying the test purpose to cover one single transition (the
farthest transition from the initial state)

Length of planning horizon
(number of steps)

anti-ant random choice

0 2199 ± 991 4928 ± 4455
1 2156 ± 1154 6656 ± 5447
2 1276 ± 531 2516 ± 2263
3 746 ± 503 1632 ± 1745
4 821 ± 421 1617 ± 1442
5 319 ± 233 618 ± 512
6 182 ± 116 272 ± 188
7 139 ± 74 147 ± 125
8 112 ± 75 171 ± 114
9 72 ± 25 119 ± 129
10 73 ± 29 146 ± 194
11 79 ± 30 86 ± 59
12 41 ± 15 74 ± 51
13 34 ± 8 48 ± 31
14 34 ± 9 40 ± 23
15 25 ± 4 26 ± 5
16 23 ± 2 24 ± 3
17 22 ± 2 21 ± 1
18 21 ± 1 21 ± 1
19 21 ± 1 21 ± 1
20 21 ± 1 21 ± 1

If the test goal is to cover one selected transition (Table 5), the RPT reached the goal with the length of

test sequence that is close to optimal. The anti-ant and random choice tester required on average 104 and
235 times longer test sequences. This experiment shows that the anti-ant tester outperforms the random
choice tester by more than twice on average with smaller standard deviation. This confirms the results
reported in (Li & Lam, 2005).

The dependency of the test sequence length on the planning horizon is shown in Figure 7.
Non-smoothness of the curves is caused by the relatively small number of experiments and large standard
deviation of the results. The planning horizon can be reduced to half of the maximum planning horizon
without significant loss of average test sequence lengths for “all transitions” coverage criterion in this
model. Even if planning few steps ahead significantly shorter test sequences were obtained than in case of
the random or anti-ant methods. For instance, when the planning horizon is restricted to 2 or 5 steps, the
average test sequence length decreases by approximately 4 or 8 times, respectively, compared to the
anti-ant and random methods. If the test goal is to cover a single transition, then the test sequence length
decreases exponentially to the value of the planning horizon.

At planning horizons less than maximum, there is no clear preference among the methods that could
resolve the non-determinism of transition selection. The anti-ant method performs better for all horizon
lengths in case of the “single transition” coverage criterion (Figure 7, right) and for small values of
horizon length in case of “all transitions” coverage (Figure 7, left). The random choice method performs
better on average for horizon lengths from 4 to 10 (Figure 7, left) for this model for the “all transitions”
coverage criterion.

19

Figure 7: Average test sequence lengths of the test sequences satisfying the all transitions (left) and single
transition (right) test goal

Figure 8: Average time spent for on-line planning of the next step

We also measured the time spent by tester for one on-line planning (selection of a test stimulus). The

average duration of a planning step in milliseconds is shown in Figure 8. The computer used for
experiments has an Intel Core 2 Duo E6600 processor running at 2.4 GHz. Experiments on the model
demonstrate that the growth of planning time with respect to the planning horizon is not more than
quadratic. The average time for calculating the gain function values with a maximum planning horizon in
one step is less than 9 milliseconds. When the planning horizon is increased to maximum then the average
depth of the shortest paths trees remains below the maximum horizon and the average planning time
stabilizes.

5 EXTENDING THE REACTIVE PLANNING TESTER FOR EFSM MODELS OF IUT

5.1 Method in general
In this section, we extend the on-line planning tester synthesis method to EFSM models of IUT with
restrictions that (i) the state variables must be of finite domain, (ii) the IUT automaton must be
output-observable, i.e. the transitions taken by IUT are recognizable by the tester. We recall shortly some
informal definitions related to EFSM models. EFSM is a collection of states , transitions , state
variables and input variables . States and transitions are labeled by names. Every transition
has a and state and is attributed by a and . A is a predicate on

20

state and input variables and must evaluate to for the transition to be enabled. An is a set
of assignments of expressions to state variables. The expressions can contain both state and input
variables. The types of the variables and operations allowed in the updates and guards are determined by
the underlying solvers used. It is safe to constrain the domain to booleans, finite enumerations with
equality and bounded integers with linear arithmetic, but it can be broadened. We do not model input and
output symbols separately, the variables of enumeration type can be used for that purpose. External
assignment of input variables is assumed whenever an input variable occurs in the guard or update of the
transition to be taken. The only condition to outputs is that the automaton must be output-observable, i.e.
the transition taken is detectable by the tester. A configuration is a tuple of a state and state
variables. An initial configuration is a subset of all configurations.

The goal of the test is specified as a set of traps . In the sequel we define a trap as a pair
 where is a transition and is a predicate defined on variables. Covering a trap means

taking the transition in a configuration , where the trap condition is satisfied in
the pre-state of the trap transition . Defining trap in this way allows to express many different coverage
criteria, e.g. path, all transitions or state variable border conditions. In order to avoid multi-level indexing,
a notation means the guard of the transition associated to the trap . To model the traps as a
part of the EFSM model a boolean variable and update of the transition is added
to the EFSM model for every trap and all the trap variables are initialized to .

By a set we mean a set of all transition sequences from transition to the
transition of trap , where all the transitions are feasible for the model and is satisfied in the

. Covering a trap means finding a path in for transitions leaving from initial
states. Length of a is the number of transitions in the sequence . Feasibility
constraint is a predicate on variables on state such that is
feasible.

The testing process is divided into the computationally expensive off-line phase where a IUT model is
analyzed and the efficient on-line phase where the instances of test input data are generated for guiding
the IUT towards the uncovered traps. The off-line constraint and measure generation comprises a
breath-first backwards constraint propagation static analysis algorithm. The propagation continues until
the fixpoint is reached or the search horizon bound is met. The result of the off-line process is a set of
constraints and expected gain measures to make the decisions on-line. More exactly, for every pair of a
state of the IUT EFSM and a trap the following is generated:

1. a shortest path constraint being a sufficient feasibility condition for the shortest paths of
 where is pre-state of ; and its length ;

2. a weakest constraint being a sufficient feasibility condition for any path in
where and the length of the paths does not exceed . is equal to the search
horizon bound or the length of the longest path that’s feasibility condition has a model that is not
a model for the feasibility constraint of any other shorter path .
for all with . expresses a fixpoint of in the later
case and is the length of the longest path contributing to the fixpoint calculation.

The exact rules for calculating the constraints are presented in section
5.3.

For every pair of a transition and trap the following is generated:
1. a shortest path constraint being a sufficient reachability condition for the shortest path of set

 and its length ;

21

2. a weakest constraint , that is a sufficient reachability condition for any path in
 with length not exceeding . is equal to the search horizon bound or the

length of the longest path that’s feasibility condition has a model that is not a model for the
feasibility constraint of any other shorter path . for all with

. expresses a fixpoint of in the later case and
is the length of the longest path contributing to the fixpoint calculation.

3. a guarding constraint on state variables evaluates to for the transition if is the
initial transition of a shortest path of considering the actual valuation of the state
variables.

The on-line process takes the generated constraints, distance measures and the IUT model as an input. It
does a three step planning on every step of the testing process:

• selects a trap from the set of uncovered traps to be taken next

• selects a transition to guide IUT closer to the trap

• selects an input to take the chosen transition

Computationally demanding parts of the tester like simplification, quantifier elimination and satisfiability
checks of the constraints are handled by the state of art SMT solver.

5.2 Simple example
We demonstrate the result of off-line computation and on-line test data generation on a simple model of a
double counter in Figure 9 before we explain the method more precisely. The model has one state variable

 and input variable , both of integer type with range . Every transition is attributed by a label,
guard and optional update. The table shows the constraints generated by the off-line computation for the
trap . The constraints on the third column are satisfied only for some values of and that
make the shortest paths with length on the EFSM control structure reachable. For example the
condition means that the shortest path with length to the trap starting with transition is
feasible only when the value of is and input must be chosen to be greater than . The weakest
conditions on the fifth column give the largest set of values of the variables that can be used for
reaching the trap. For any input value satisfying the constraint, there is a path to the trap not longer than

. The result of a constraint seems unintuitive on the first glimpse. It is clear that a path starting
with can eventually lead to the trap regardless of the value of in state , but it is not reflected in
the constraint. The reason is that the calculation reaches a fixpoint for on step , as can be seen from
the values of and due to presence of transition . expresses condition on the
state variables for paths no longer than , but it is sufficient for our purposes and there is no need to
generate more general constraint. A condition is satisfied in current valuation of the data variables
when the shortest path to trap starts with transition . The conditions are used to guide the tester
towards the trap. It can be seen most clearly from the conditions , , and for the
transitions , , and leaving from state .

22

Fig. 9 Model of IUT (double counter) and generated constraints

Lets have a look what happens on-line when the real inputs must be generated, assuming that we have all
the constraints prepared off-line. We start from state with equal to . The guarding constraints are
used for choosing a right transitions, but and are both satisfiable and do not constrain the
choice, because a path with length is possible both ways. We have a non-deterministic model and
nothing in the model forces to be taken, but let us assume that the random choice works for our favor
this time. Choosing transition gives a concrete instance of constraint
to be solved and an input is generated. Guarding constraints , , and
determine that is the transition of choice from state . Just solving for determining the
input can give a value which can trigger also. Solving
gives value for the input and resulting to be taken and to be equal to 4. Next step does not
depend on input, but the guard of is satisfied and taken eventually.

5.3 Offline computation
The generation of reachability constraints that guide on-line testing process is carried out off-line. The
reachability constraints for transition-trap and state-trap pairs are constructed by backwards breath-first
propagation of the constraints starting from the traps. The shortest path constraints are constructed
when the transition or state with constraint not equal to is encountered first in that propagation. For
finding the weakest condition the computation continues and the constraints are weakened at each step
until the fixpoint is reached or the search depth bound is reached. The fixpoint is guaranteed to exist as
long we restrict the model to be of finite domain, but finding it may be computationally infeasible and the
computation is canceled at some traversal depth. In that case, the constraints express the conditions for the
paths with length up to the bound.

Algorithm 2 presents the procedure for finding the constraints and path lengths for on-line test
navigation. The algorithm employs the monotonic nature of the constraint derivation. It carries over only

23

the changes discovered at each traversal step and adds the result to the previous value of the
constraint as a new disjunct (lines 8, 12). State condition change is calculated (line 6) by
eliminating all the inputs from the disjunction of constraint changes of the outgoing transitions of the
current state . Input ellimination is carried out by the existential quantifier ellimination procedure in the
simplification procedure. Transition condition change is a conjunction of two constraints (line 11).
The first conjunct is the guard of the transition . The second conjunct is the weakest
precondition of the current transition’s update and of the condition change of that
transition’s target state . The weakest precondition calculation is a straightforward substitution in case
the update is a collection of evaluations and assignments. The most complicated is the calculation of the
guarding constraints (line 14). The update of the constraint can be interpreted as the valuation of
the state variables that satisfy the transition’s constraint change but do not satisfy the constraint

 of the source state of the transition and will be used to extend the interpretation set of the
 in the next iteration. Constraints for the shortest paths are determined when satisfiable

constraint change is found (line 9, 13). The fixpoint is reached when no weakening happens on
the traversal step and it is checked by the constraint satisfiability check (SAT) procedure (line 7). Some
simplification procedures are applied to all intermediate results to reduce the size of the formula.

Tuning the planning horizon or depth level of the search allows a trade-off to be found between close to
optimal (in terms of test length) and scalability of tester behavior with computationally feasible expenses.
The discussion about finding a suitable planning horizon is given in Section 5.6.

5.4 On-line computation
The goal of on-line computation during a test run is to find the shortest possible path covering the
maximal number of traps while keeping the on-line computation as efficient as possible. The planning,
based on pre-computed constraint set, is done repetitively, i.e. before executing each EFSM transition.
Planning is performed in three steps (Algorithm 3): (i) the succession of traps is planned; (ii) the path from
current state to the next trap is planned; (iii) the data is generated for IUT to guide the IUT along the
preferred path.

Kasutaja
Line

24

The next trap to reach from current state is selected in step (i) using the lengths to traps found
off-line. The lengths serve as interval estimates of the distances to traps and are used for planning the
order the traps have to be taken. The actual test length depends on the valuation of the variables and
cannot be determined off-line. There are several strategies for selecting the order of traps starting with the
greedy approach to guide the test towards the closest uncovered trap and ending with the global planning
approach that involves solving NP-complete asymmetric traveling salesman problem (ATSP) for finding a
shortest path through all traps. This can be computationally quite expensive when the number of traps is
large. Still, this is not the issue because the intended order of covering traps can be computed off-line. Fast
heuristic approximating ATSP algorithms can be applied also later in on-line phase to refine the plan
when the IUT due to its non-determinism deviates from the planned path. Alternatively, the greedy
approach does all the planning on-line trying to reach the closest trap from the current state taking into
account data constraints. The planning horizon can be parametrically tuned from greedy to global
planning by setting how many traps ahead the planning covers.

To guide IUT towards the trap chosen in step (i) the next transition is selected in step (ii) using the
guarding constraints of outgoing from current state transitions . The guarding constraints of
outgoing transitions are mutually exclusive except when two transitions prefixing two different paths to
the same trap have equal lengths and non-contradictory data constraints. For checking the constraints

 we apply a simple heuristic that chooses constraints in the order of increasing values of .
In order to take the chosen transition in step (ii) a suitable input must be generated in step (iii). The

input is generated by solving the constraint of the path using random choice, border value, or corner value
data coverage strategy. The most liberal constraint that can be used is denoted by . This constrains
the input to the values that guide IUT towards the trap along the path that is not longer than . It may
not be the optimal path and the values satisfying may trigger also some other transition in the case
of non-deterministic automaton. The negations of the guards of neighboring transitions may be conjoined
to the constraint to rule out the non-deterministic choice. Alternatively the constraint can be
used, if satisfiable, to guide the IUT to the trap along the shortest path. Input generation involves
constraint solving which is not in the scope of this paper. We assume that the constraints involving
propositional logic and linear inequalities can be solved efficiently by standard methods.

25

5.5 Example
Inres protocol is a well-known example in the model verification and test generation community. The
protocol is simple but not trivial and provides a good reference for studying performance and scalability
issues of competing methods. The protocol was introduced in (Hogrefe, 1991) and the Inres Initiator
model is depicted in Figure 10 as an EFSM. The model is deterministic and does not demonstrate the full
potential of the method presented. The on-line phase of input data generation can be carried out also
off-line for deterministic systems.

The model has 4 states, 14 transitions, 2 state variables counter and number, and 2 input variables inp
and num. The integer variable counter has a range , number and num have a range and the
enumeration variable inp models the input messages DR, CC, AK, ICONreq, and Timer.timeout.

Fig 10: EFSM model of INRES protocol

An excerpt of the constraints and distance measures generated by the off-line tester synthesis is presented
in Table 6. Traps are defined for transitions with condition and shown in column To. The
constraints and distance measures are given for a pair of transitions in columns Via and To, i.e. the
constraint on the second line of the column C is . Values in the column C*
mean that the constraint is the same as in column C.

Table 7 explains the on-line tester behavior for guiding the IUT towards the trap on transition t3 from
the initial state Disconnected. The data in the table expresses the results of constraint solving done in the
on-line process. Empty entries mean that there was no need to solve the corresponding constraints. The
column Next expresses the decision of the transition to be taken next and it succeeds always because of the
deterministic nature of the model. Two steps similar to step 2 are omitted.

Kasutaja
Line

26

Table 6: Excerpt of generated constraints for the Inres Initiator example
Via T

o
C C L C* L*

t0 t0 true inp = ICONreq 1 C 1
t11 t0 false inp = DR 2 C 2
t1 t1 true inp = CC 1 C 1
t2 t1 false counter 3

inp = Timer.timeout
2 C 2

t3 t1 false counter = 4
inp = Timer.timeout

3 C 3

t12 t1 false inp = DR 3 C 3
t0 t3 true inp = ICONreq 6 C 6
t1 t3 false inp = CC 8 C 8
t2 t3 counter

<= 3
counter = 3

inp = Timer.timeout
2 counter 3 5

 inp =
Timer.timeout

t11 t3 false inp = DR 7 C 7
t3 t3 counter =

4
counter = 4 inp =

Timer.timeout
1 C 1

t12 t3 false inp = DR 7 C 7
t4 t4 true inp = 1 1 C 1

t13 t4 false inp = DR 4 C 4
t5 t5 number =

0
inp = AK num = number

1 C 1

 number = 0
t6 t5 number =

1
inp = AK num = number

3 C 3

 number = 1 C
t7 t5 false inp = AK num <> number

2 C 2

 number = 0 counter <=3
t8 t5 false inp = AK num number 7 C 7
 counter = 4

t9 t5 false inp = Timer.timeout 2 C 2
 number = 0 counter <=3

t10 t5 false inp = Timer.timeout
counter = 4

7 C 7

t14 t5 false inp = DR 7 7
t5 t6 number =

0
inp = AK num = number

3 C 3

 number = 0
t6 t6 number =

1
inp = AK num = number

1 C 1

 number = 1
t7 t6 false inp = AK num number 2 C 2
 number = 1 counter 3

27

t8 t6 false inp = AK num number 5 C 5
 counter = 4

t9 t6 false inp = Timer.timeout 2 C 2
 number = 1 counter 3

t10 t6 false inp = Timer.timeout
counter = 4

5 C 5

t14 t6 false inp = DR 5 C 5

Table 7: Creating a path to reach the transition t3 from the state Disconnected

Step (State, counter,
number)

Vi
a

T
o

C C C* Ne
xt

1 (Disconnected,_,_,) t0 t3 ICONreq t0
 t11 t3

2 (Waiting,0,_) t3 t3
 t2 t3 UNSAT Timer.tim

eout
t2

 t1 t3
 t12 t3
 ...

5 (Waiting,3,_) t3 t3
 t2 t3 Timer.tim

eout
 t2

 t1 t3
 t12 t3

6 (Waiting,4,_) t3 t3 Timer.tim
eout

 t3

 t2 t3
 t1 t3
 t12 t3

Table 8 demonstrates the use of the generated constraints for guiding the IUT along the path

. This path is particularly difficult to achieve with random testing (Derterian,
Hierons, Harman, & Guo, 2010), but it is straightforward using the proposed method.

The off-line calculation of the constraints for all-transitions test goal expressed by 14 traps took 54
seconds on 2 GHz computer and involved 1744 calls to underlying solver. The constraint solving for
on-line data generation is fast, being 0.026 seconds in average and comprising mainly of input-output
operations for such a simple constraints. The on-line solving time has been in the same order of magnitude
in other case studies that include considerably larger constraints having thousands of subformulas.

5.6 Handling complexity
The complexity of on-line constraint solving is a critical factor in testing time critical systems. Strictly
bounded reaction time in test execution is a restriction that forces to pay contribution to test run-time
planning quality. Several heuristics can be used for guiding the selection of test paths at run-time, e.g.,
anti-ant search strategy (Nachmanson, Veanes, Schulte, Tillmann, & Grieskamp, 2004), in (Derderian,
Hierons, Harman, & Guo, 2010) fitness function is computed for EFSM IUT models, in (Vain, Raiend,
Kull, & Ernits, 2007) a control graph based gain function is proposed and its usability discussed. To
address the scalability problem of the method proposed in Section 5.1, we propose to extend the offline

28

test data constraint construction technique so that it takes explicitly into account its run-time execution
time bound. The data constraint construction method describe in Section 5.3 is incremental in the sense
that the algorithm extends the global path constraint step-wise by backward search starting from the traps.
Thus, it is natural to assume that the size of path constraint increases monotonously along the model
traversal process. One can calculate the constraint complexity by the length of the constraint formula but
that gives only indirect characterization of its on-line solving time. Therefore, instead of formula based
complexity estimation we evaluate the data constraint on-line solving time iteratively at each constraint
construction step. The constraints are solved with arbitrary data values since due to the constraint shape
used its valuation time is roughly independent of its variable valuation. As a result of iterative evaluation
of the path constraint for a trap, its construction stops when the constraint solving time exceeds the test
reaction time limit.

Table 8: Executing the transition path t0;t1;t4;t6;t4;t5

Step (State, counter,
number)

Via To C C C* Nex
t

1 (Disconnected,_,_,) t0 t0 ICONr
eq

 t0

 t11 t0
2 (Waiting,0,_) t1 t1 CC t1
 t2 t1
 t3 t1
 t12 t1

3 (Connected,0,1) t4 t4 IDATr
eq

 t4

 t13 t4
4 (Sending,0,1) t6 t6 AK(1) t6
 t7 t6
 t9 t6
 t5 t6
 t8 t6
 t10 t6
 t14 t6

5 (Connected,0,0) t4 t4 IDATr
eq

 t4

 t13 t4
6 (Sending,0,0) t5 t5 AK(0) t5
 t7 t5
 t9 t5
 t6 t5
 t8 t5
 t10 t5
 t14 t5

The given heuristics alone provide only partial information for on-line planning since every trap may

not be “visible” (the data constraint grows over complexity limit) for some states of the IUT model. In
order to avoid those “blind” states regarding traps with too complex data constraints, we use partial (and
more concise) guiding information in the form of control graph based distance estimation from given state
to the states where the full data constraint to “unseen” trap is present. Similarly to (Vain, Raiend, Kull, &

29

Ernits, 2007) the weaker knowledge about the trap reachability is encoded in the gain functions that allow
evaluating the control graph distances and based on that, the best directions to the states where the full
data constraint is defined for a targeted trap. Procedurally, both explicit and implicit knowledge for
on-line planning are computed in two waves: (i) the full data constraint for each feasible path to given trap
labeled transition is computed using backward constraint propagation algorithm and the propagation stops
when the constraint solving time exceeds its given bound; (ii) for each trap constraint and for each IUT
model state unlabelled with data constraint constructed in (i) the gain function is computed based on
control graph to evaluate the most promising direction to data constraint labeled states. As shown in
(Vain, Raiend, Kull, & Ernits, 2007) the gain function construction complexity is , (is the
number of transitions in the tester model) and its practical usage feasible for testing embedded systems
with bounded planning horizon (Kull, Raiend, Vain, & Käärameees, 2009).

6 CONCLUSIONS AND FUTURE WORK
In this chapter we proposed a model-based construction of an on-line planning tester for black-box testing
of the IUT. The IUT is modelled in terms of an output observable non-deterministic EFSM. The tester
synthesis was introduced at first using a restricted class of EFSM models of the IUT. That is motivated by
the fact thatthere exists a transformation (although with very high complexity) from such EFSM to FSM
(Henniger, Ulrich, & König, 1995). That are EFSM models were the variables have finite, countable
domains and the data constraints are linear. The method comprises off-line static analysis phase and the
on-line test planning and execution phase. As the result of the off-line analysis of the IUT model the data
and control constraints for efficient on-line test planning are prepared. The generated constraints are used
in on-line test guidance for generating IUT inputs to reach the test goal along sub-optimal paths. No costly
model exploration and path finding operation is needed on-line.

As an extension of the on-line planning tester synthesis method the test data constraint construction
and solving was introduced. The experiments have been made to prove the feasibility of the RPT synthesis
method on a case-study where the IUT is the well-known Inres protocol. The case study showed that
deriving the constraints without the need to restrict the planning horizon is feasible, solving the constraints
for test data generation is very efficient and the results allow to drive the IUT along the optimal paths to
fulfill the test requirements. Also a case study of the model of stopwatch having deep loop counters have
been tried successfully up to 1000 steps of search depth. The current results have been obtained by a tool
which builds on top of the state of the art SMT-solver Z3 (Moura & Bjørner, 2008) using it for quantifier
elimination, simplification, checking satisfiability, and solving the complex constraints. The experiments
provide a good indication that the proposed method has a potential for the case studies of reasonable size
where the on-line testing of non-deterministic systems is needed.

Finally, the heuristics that improve the scalability of on-line planning for systems of industrial size and
requiring tester’s bounded response time have been proposed. According to the heuristic, the planning
horizon is determined strictly based on the time complexity of solving data constraints on-line.

30

6.1 Related Work
For MBT a model that represents the IUT specification is required. Finite state machine (FSM) and
extended finite state machine (EFSM) are commonly used for the purpose of test case derivation
(Petrenko, Boroday, & Groz, 2004). An FSM can model the control flow of a system. In order to model a
system which has both control and data parts, e.g., communication protocols, an extension is needed. Such
systems are represented using an EFSM model (Kalaji, Hierons, & Swift, 2009). The EFSM model has
been widely studied and many methods are available which employ different test data generation
approaches (Lai, 2002; Lee & Yannakakis, 1996). Nevertheless, automated test data generation from
EFSM model is complicated by the presence of infeasible paths and is an open research problem (Offutt &
Hayes, 1996).
In an EFSM model, a given path can be classified as either infeasible or feasible. The existence of some
infeasible paths is due to the variable inter-dependencies among the actions and conditions. If a path is
infeasible, there is no input test data that can cause this path to be traversed. Thus, if such a path is chosen
in order to exercise certain transitions, these transitions are not exercised even if they can be exercised
through other feasible paths (Kalaji, Hierons, & Swift, 2009). While the feasibility of paths is undecidable,
there are several techniques that handle them in certain special cases (Offutt & Hayes, 1996; Chanson &
Zhu, 1993; Hamon, Moura, & Rushby, 2004).

MBT can be applied for both off-line and on-line generation of test cases. In case of on-line
testing, the test generation procedure derives only one test input at a time from the model and feeds it
immediately to the IUT as opposed to deriving a complete test case in advance like in off-line testing. In
on-line testing, it is not required to explore the whole state space of the model of the IUT every time the
test stimulus is generated. Instead, the decisions about the next actions are made by observing the current
output of the IUT (Tretmans & Brinksma, 2002). However, on-line test execution requires more run-time
resources for interpreting the model and choosing the test stimulus. The on-line testing methods differ in
how the test purpose is defined, how the test stimuli are selected on-the-fly, and what is the planning effort
behind each choice.

The test purpose can be stated in very abstract way when applying conformance (IOCO or
TIOCO) relation (Briones & Brinksma, 2004). Usually the conformance relation is tested using either a
completely random or some heuristic driven state space exploration algorithm. A test stimulus at given
state is selected randomly from the set of stimuli having uniform distribution of preference to trigger a
next transitions of IUT model. Random choice has been used in early TorX tool (Belinfante, Feenstra,
René, Vries, Tretmans, Goga, Feijs, Mauw, & Heerink, 1999), Uppaal-Tron (Larsen, Mikucionis, Nielsen,
& Skou, 2005; Mikucionis, Larsen, & Nielsen, 2004) and also in the on-the-fly testing mode of
SpecExplorer (Nachmanson, Veanes, Schulte, Tillmann, & Grieskamp, 2004). In (Feijs, Goga, & Mauw,
2000), also the transition probabilities directed input selection method is introduced to TorX. More
restrictive are the test goal-directed exploration algorithms that reduce the total number of states to be
explored in a model. The goal-directed approach is stronger than random exploration in the sense of
providing guidance towards a certain set of IUT execution sequences that cover so called test goal items
(e.g., states or transitions in the IUT model). The goal-directed approach was introduced in (Ferguson &
Korel, 1996; Korel & Al-Yami, 1996), used in testing tool elaborated in (Vries, 2001) and later used in
TorX (Tretmans & Brinksma, 2003) and TGV (Jard & Jeron, 2005).

Further advancement of test goal specification has been introduced in NModel (Veanes,
Campbell, Schulte, 2007; Veanes, Campbell, Grieskamp, Schulte, Tillmann, & Nachmanson, 2008)
where the IUT model presented as a model program can be composed with test scenario models to restrict
the sets of test sequences. An “anti-ant” heuristic (Li & Lam, 2005) (“anti-ant” heuristic prefers least
visited edges while making a graph search) based algorithm of reinforcement learning (Veanes, Roy, &
Campbell, 2006) is used to cover specified test sequences in the model program.

31

While distinguishing the on-the-fly test input selection methods by their planning effort, e.g., by
the depth of planning horizon, the simplest and fastest method is random choice. The planning horizon of
the random choice is zero steps ahead. Non-zero, but still short range planning is applied in anti-ant
methods that try to avoid already executed test sequences. For selecting the next stimuli from the set of
possible ones the anti-ant method takes the less used transition of the model. The planning horizon of the
anti-ant algorithm is just 1 step ahead. The anti-ant heuristic-based state space exploration method is used
in (Larsen, Mikucionis, Nielsen, & Skou, 2005), and (Li & Lam, 2005) to cover all transitions of the IUT
model.

The reactive planning testing approach introduced in this chapter is goal-directed like the methods
used in TorX and TGV. The test goal in RPT can be stated also in the form of test scenario model like in
NModel. For that, the tester model is constructed as synchronous parallel composition of the test scenario
model and the IUT model. The test scenario model specifies the test coverage items (e.g., states,
transitions), also the conditions and temporal order the coverage items need to be visited during the test
run. The usage of test scenario models clearly increases the expressiveness of test goal specification
language compared with simple trap set specification format. That allows stating dynamic resetting,
partial order and repetitive visits of coverage items during the test run.

When comparing the on-line testing methods by their planning capability, the methods can be
ordered by their online planning depth. The RPT (Vain, Raiend, Kull, & Ernits, 2007) involves a planner
that looks ahead more than one step at a time to reach still unsatisfied parts of the test purpose, whereas
the anti-ant approach looks only one step ahead when selecting the least visited outgoing transition from a
current state. While the random walk has planning horizon 0 steps ahead and “anti-ant” just 1 step ahead
the planning horizon of RPT can be parametrically tuned. That allows to “see” the existence and direction
of unattended test coverage items from other states of the model though the item itself can be behind the
exact planning horizon yet. Moreover, the reactive planning tester is able to guide the model on-the-fly
exploration towards still unexplored areas even in cases when they are “shielded” by the parts of the
model already traversed. Because of the longer planning horizon RPT can result in shorter test sequences
compared to random choice and anti-ant methods.

The price to pay for shorter test cases is the complexity of the planning constraints to be solved
on-line to guide the selection of test stimuli. The performance advantage of RPT over pure anti-ant and
random choice methods depends on many factors, like model size and structural complexity, the degree of
non-determinism, and the placement of coverage items in the model. Model size and complexity affect, in
the first place, the size and complexity of the rules the RPT has to execute on-the-fly. Second, as the IUT
specification model may be non-deterministic, it is impossible to predict exactly what paths appear to be
more preferable in terms of the test length and how long time such test should take. Only under the
fairness assumption all non-deterministic choices will be traversed eventually and the test purpose is
potentially reachable. Thus, the degree of the non-determinism of the IUT model is a factor that can make
the exhaustive or even deeper planning worthless. For instance, the planning may target to reach a
coverage item behind some non-deterministic choice point in the IUT model but due to the
non-determinism the reachability of the coverage item is not granted for the run of a given length. If there
are many non-deterministic choices on the path to the next coverage item then the non-determinism can
direct the test execution more likely to the paths other than those needed for reaching the test goal.
Therefore, the distribution of coverage items in the model may affect the resulting test sequence length.
Depending on the non-determinism handling strategy the test planning rules in RPT can prefer either
potentially shorter paths to reach the test coverage items but including in the same time non-deterministic
choices (“optimistic“ strategy), or alternatively, the deterministic paths that may be considerably longer
but guarantee the reachability of test coverage items (“pessimistic” strategy).

Tightly related with on-line test planning is the topic of test data generation that implement the
intended test stimuli. The problem has been studied initially within the context of programs and specific
programming language data types. With the advent of MBT the problem has been addressed in terms of

32

more abstract structures, e.g., EFSMs. Generally, the goal of test data generation is to find the input values
to IUT that will guide the execution to reach the testing goals. This is achieved in two steps: (i) find the
data constraint for some test goal related path, (ii) solve the path constraint in terms of input variables. The
solution will then be a system of (in)equalities describing how input data should be formed in order to
traverse the path (Edvardsson, 1999).

Depending on the test coverage criteria the test data generation method can be either random
generation, generating test data for an unspecific path, or generating test data for a specific path (Ferguson
& Korel, 1996). These approaches are called respectively random, goal-oriented, and path oriented test
data generation. Each of these generation methods can be implemented statically or dynamically
(on-the-fly). Random testing relies on probability and has quite low chances in finding faults that are
revealed by a small percentage of the program input (Offutt & Hayes, 1996), and thus accomplish high
coverage. Since random testing is considered to be of the lowest acceptance rate it is often used as test
data generation benchmark (Chang, Carlisle, Cross II, & Brown, 1991). The goal-oriented (-directed)
approach is stronger in the sense of providing guidance towards a certain set of IUT execution sequences.
It generates input that traverses some of the sequences that satisfies the test goal. Since the sequences are
selected arbitrarily this reduces the risk of encountering infeasible (non-traversible) sequences and
provides a way to direct the search for input values as well. For instance, two goal-oriented methods using
this technique have been implemented in the system (Ferguson & Korel, 1996; Korel & Al-Yami, 1996):

• Chaining approach uses data dependence to find solutions to branch predicates. For that a chain
of nodes is identified that is necessary to the execution of the goal coverage item. The chain is
built up iteratively during execution. Since it uses the “find-any-path” concept it is hard to predict
the coverage given a set of goals.
• Assertion-oriented approach is an extension of the chaining approach. It utilizes the
goal-oriented generation in the following way: certain conditions (assertions) are inserted in the
code either manually or automatically. When an assertion is executed it is supposed to hold,
otherwise there is an error either in the program or in the assertion. The goal of assertion-oriented
generation is to find any execution sequence to violate an assertion. The advantage of this method
is that the test oracle is given in the code and there is no need for calculating the test data from
some other source than the code. So called path-oriented generation does not provide the test data
generator with a possibility of selecting among a set of test sequences, but just one specific. It is
the same as a goal-oriented test data generation, except for the use of specific sequences. This
leads to a better prediction of coverage. On the other hand, due to the more strict path constraint it
is harder to find the test data.
All test data generation methods listed above (except random testing) have to solve a path

constraints (predicates). Due to the fact that symbolic constraint solving generally is undecidable, e.g., in
case of programs with function calls, partial constraint satisfaction techniques are applied. Promising
search methods are simulated annealing (Tracey, Clark, & Mander, 1998), and evolutionary algorithms
(Kalaji, Hierons, & Swift, 2009) for their data type independence and iterative relaxation (Gupta, Mathur,
& Soffa, 1998) for its predictability. As an alternative to static test data generation the dynamic
approaches (Godefroid, Halleux, Nori, Rajamani, Schulte, Tillmann, & Levin, 2008; Derderian, Hierons,
Harman, & Guo, 2010) do not suffer from undecidable constraints to the same extent as static methods.
Dynamic test generation extends static test generation with additional run-time information, so it is more
general and powerful. For instance, in a DART system (Godefroid, Halleux, Nori, Rajamani, Schulte,
Tillmann, & Levin, 2008) directed search is applied. Each new input vector tries to force the program’s
execution through some new path. By repeating this process, the directed search attempts to force the
program to sweep through all its feasible execution paths, similarly to systematic testing and dynamic
software model checking.

An example of combining dynamic and static test generation is white box fuzz testing used in
SAGE system (Godefroid, Levin, & Molnar, 2008). SAGE extends previous dynamic testing approaches

33

by using offline trace-based, rather than on-line, constraint generation. It handles also hard-to-control
non-determinism in large target programs that makes debugging on-line constraint generation difficult.
Thanks to offline analysis, constraint generation in SAGE is completely deterministic because it works
with an execution trace that captures the outcome of all non-deterministic events encountered during the
recorded run. As pointed out in cases of goal- and path oriented test data generation methods constructing
the full path constraints, their simplification and run time solving is very complex task even in cases when
they are decidable, e.g., in case of linear constraints on bounded finite data domains.

ACKNOWLEDGMENTS

This work was partially supported by the Estonian Science Foundation under grant No. 7667, and by the
ELIKO Competence Centre project “System Validation and Testing”.

REFERENCES
TestCast Generator. On-line: http://motes.elvior.com/. (Accessed November 7, 2010)

DACS Gold Practice Website. MODEL-BASED TESTING. On-line:
https://goldpractice.thedacs.com/practices/mbt/. (Accessed November 7, 2010)

ITEA2 project “Deplyment of Model-Based Technologies to Industrial Testing” Website. On-line:
http://www.d-mint.org/. (Accessed November 4, 2010)

Belinfante, A., Feenstra, J., René, G., de Vries, R. G., Tretmans, J., Goga, N, Feijs, L. M. G., Mauw, S., &
Heerink, L. (1999). Formal test automation: A simple experiment. In IFIP TC6 12th International
Workshop on Testing Communicating Systems (pp. 179–196). Kluwer, B.V.

Brinksma, E., & Tretmans, J. (2001) Testing transition systems: an annotated bibliography. Lecture Notes
in Computer Science, Springer-Verlag. Vol. 2067, 187–195.

Briones, L. B., & Brinksma, E. (2005) A test generation framework for quiescent real-time systems. In
FATES2004, Vol 339. (pp. 64–78). Springer-Verlag.

Chang, K.-H., Carlisle, W. H., Cross II, J. H., & Brown, D. B. (1991) A heuristic approach for test case
generation. In CSC ’91: Proceedings of the 19th annual conference on Computer Science (pp. 174–180).
ACM.

Chanson, S. T., & Zhu, J. (1993) A unified approach to protocol test sequence generation. In INFOCOM
’93. Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking:
Foundation for the Future (pp. 106–114). IEEE.

Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2001) Introduction to Algorithms.
McGraw-Hill Higher Education.

Derderian, K., Hierons, R. M., Harman, M., & Guo, Q. (2010) Estimating the feasibility of transition
paths in extended finite state machines. Automated Software Engg., 17(1), 33–56.

Duale, A. Y., & Uyar, M. Ü. (2004) A method enabling feasible conformance test sequence generation
for EFSM models. IEEE Trans. Comput., 53(5), 614–627.

Edvardsson J. (1999) A survey on automatic test data generation. In Second Conference on Computer
Science and Engineering, (pp. 21–28). ECSEL, Linköping.

34

Feijs, L. M. G., Goga, N., & Mauw, S. (2000) Probabilities in the Torx test derivation algorithm. In 2nd
Workshop on SDL and MSC (pp. 173– 188). VERIMAG, IRISA, SDL Forum Society.

Ferguson R., & Korel, B. (1996) Generating test data for distributed software using the chaining
approach. Inf. Software Technology, 38(5), 343–353.

Godefroid, P., de Halleux, P., Nori, A. V., Rajamani, S. K., Schulte, W., Tillmann, N., & Levin, M. Y.
(2008) Automating software testing using program analysis. IEEE Software, 25, 30–37.

Godefroid, P., Levin, M. Y., & Molnar, D. A. (2008) Automated whitebox fuzz testing. In NDSS: 16th
Annual Network & Distributed System Security Symposium: The Internet Society.
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf (Accessed
November 7, 2010).

Gupta, N., Mathur, A. P., & Soffa, M. L. (1998) Automated test data generation using an iterative
relaxation method. In In SIGSOFT 201998/FSE-6 6th ACM SIGSOFT international symposium on
Foundations of software engineering (pp. 231–244). ACM Press.

Hamon, G., de Moura, L., & Rushby, J. (2004) Generating efficient test sets with a model checker. In
SEFM ’04: Proceedings of the Software Engineering and Formal Methods, Second International
Conference (pp. 261–270). IEEE Computer Society.

Henniger, O., Ulrich, A., & König, H. (1995) Transformation of estelle modules aiming at test case
generation. 8th IFIP International Workshop on Protocol Test Systems (pp.45-60). IFIP.

Hierons, R. M., Kim, T.-H., & Ural, H. (2004) On the testability of sdl specifications. Comput. Netw.,
44(5), 681–700.

Hogrefe, D. (1991). OSI formal specification case study: The Inres protocol and service. Technical
Report: Vol. 91-012, University of Bern, Switzerland.

Jard, C., & Jeron, T. (2005) Tgv: theory, principles and algorithms: A tool for the automatic synthesis of
conformance test cases for non-deterministic reactive systems. Int. J. Software Tools Technology Transfer,
7(4), 297–315.

Kalaji, A., Hierons, R. M., & Swift, S., (2009) A search-based approach for automatic test generation
from extended finite state machine (efsm). In TAIC-PART ’09: Testing: Academic and Industrial
Conference - Practice and Research Techniques (pp. 131–132). IEEE Computer Society.

Korel, B., & Al-Yami, A. M. (1996) Assertion-oriented automated test data generation. In ICSE ’96:
Proceedings of the 18th international conference on Software engineering, (pp. 71–80). IEEE Computer
Society.

Kull, A., Raiend, K., Vain, J., & Kääramees, M. (2009) Case study-based performance evaluation of
reactive planning tester. In Model-based Testing in Practice: 2nd Workshop on Model-based Testing in
Practice (MoTiP 2009), CTIT Workshop Proceedings Series, WP09-08, 87–96.

Lai, R. (2002) A survey of communication protocol testing. J. Syst. Softw., 62(1), 21–46.

35

Larsen, K. G., Mikucionis, M., Nielsen, B., & Skou, A. (2005) Testing real-time embedded software
using uppaal-tron: an industrial case study. In EMSOFT ’05: 5th ACM International Conference on
Embedded Software, (pp. 299–306). ACM.

Lee, D., & Yannakakis, M. (1996) Principles and methods of testing finite state machines-a survey.
Proceedings of the IEEE, 84(8), 1090–1123.

Li, H., & Lam, C. (2005) Using anti-ant-like agents to generate test threads from the uml diagrams. In
Testcom 2005, Lecture Notes in Computer Science, Vol 4262 (pp. 69-80). Springer-Verlag.

Luo, G., von Bochmann, G., & Petrenko, A. (1994) Test selection based on communicating
nondeterministic finite-state machines using a generalized wp-method. IEEE Trans. Softw. Eng., 20(2),
149–162.

Lyons, D. M., & Hendriks, A. J. (1992) Reactive planning. In S.C. Shaphiro (Ed.), Encyclopedia of
Artificial Intelligence, 2nd edition, (pp. 1171–1181). John Wiley & Sons.

Mikucionis, M., Larsen, K.G., & Nielsen, B. (2004) T-uppaal: Online model-based testing of real-time
systems. In ASE ’04: 19th IEEE international conference on Automated software engineering, (pp.
396–397). IEEE Computer Society.

Moura, L., & Bjørner, N. (2008) Z3: An efficient SMT solver. In Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Lecture Notes in Computer Science, Vol. 4963 (pp.
337–340). Springer-Verlag.

Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., & Grieskamp, W. (2004) Optimal strategies for
testing nondeterministic systems. In ISSTA04: Vol. 29. Software Engineering Notes (pp. 55–64). ACM.

Offutt, A. J., & Hayes, J. H. (1996) A semantic model of program faults. SIGSOFT Softw. Eng. Notes,
21(3), 195–200.

Petrenko, A., Boroday, S., & Groz, R. (2004) Confirming configurations in EFSM testing. In IEEE
Trans. Softw. Eng., 30(1), 29–42.

Starke, P. H. (1972) Abstract Automata. Elsevier, North-Holland, Amsterdam.

Tracey, N., Clark, J., & Mander, K. (1998) Automated program flaw finding using simulated annealing.
In ISSTA ’98: ACM SIGSOFT international symposium on Software testing and analysis, (pp. 73–81).
ACM.

Tretmans, G. J., & Brinksma, H. (2003) Torx: Automated model-based testing. In A. Hartman and
K. Dussa-Ziegler, (Eds.), First European Conference on Model-Driven Software Engineering,
Nuremberg, Germany, (pp. 31–43), University of Twente Publications.

Tretmans, J. (1999) Testing concurrent systems: A formal approach. In 10th International Conference on
Concurrency Theory (CONCUR ’99), (pp. 46–65), Springer-Verlag.

Tretmans, J., & Brinksma, E. (2002) Côte de resyste: Automated model based testing. In M. Schweizer,
(Ed.), 3rd PROGRESS Workshop on Embedded Systems, (pp. 246–255), STW Technology Foundation.

36

Vain, J., Raiend, K., Kull, A., & Ernits, J. (2007) Synthesis of test purpose directed reactive planning
tester for nondeterministic systems. In 22nd IEEE/ACM International Conference on Automated Software
Engineering, (pp. 363 – 372). ACM Press.

Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., & Nachmanson, L. (2008)
Model-based testing of object-oriented reactive systems with spec explorer. In Formal Methods and
Testing, Lecture Notes in Computer Science, Vol. 4949 (pp. 39–76). Springer.

Veanes, M., Campbell, C., Schulte, W. (2007) Composition of model programs. In FORTE 2007,
Lecture Notes in Computer Science, Vol. 4574 (pp. 128–142). Springer.

Veanes, M., Roy, P., & Campbell, C. (2006) Online testing with reinforcement learning. In Proceedings
of FATES/RV: Lecture Notes in Computer Science, Vol. 4262 (pp. 240–253). Springer-Verlag.

Vries, R. G. (2001) Towards formal test purposes. In G. J. Tretmans and H. Brinksma, (Eds.), Formal
Approaches to Testing of Software 2001 (FATES’01) BRICS Notes Series: Vol NS-01-4, (pp. 61–76).
BRICS Aarhus, Denkmark.

Williams, B. C., & Nayak, P. P. (1997) A reactive planner for a model-based executive. In 15th
International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1178–1185), American Association
for Artificial Intelligence.

	1 INTRODUCTION
	1.1 On-line Testing
	On-line testing is widely considered to be the most appropriate technique for model-based testing (MBT) of embedded systems where the implementation under test (IUT) is modelled using nondeterministic models (Veanes, Campbell, & Schulte, 2007; Veanes,...
	The state-space explosion problem experienced by many model-based offline test generation methods is avoided by the on-line techniques because only a limited part of the state-space needs to be kept track of at any point in time when a test is running...
	The simplest approach to on-the-fly selection of test stimuli in model-based on-line testing is to apply so called random walk strategy where no computation sequence of IUT has an advantage over the others. The test is performed usually to discover vi...
	In order to overcome the deficiencies of long lasting testing usually additional heuristics, e.g. “anti-ant” (Li & Lam, 2005; Veanes, Roy, & Cambell, 2006), dynamic approach of DART system (Godefroid, Halleux, Nori, Rajamani, Schulte, Tillmann, & Levi...
	In this chapter we introduce the principle of reactive planning for on-the-fly selection of test stimuli and the reactive planning tester (RPT) synthesis algorithm for offline construction of those selection rules.The RPT synthesis algorithm assumes t...
	2.2 Model-Based Testing with EFSMs
	2.3 Extended Finite State Machine
	2.4 Modelling the IUT
	Denote the EFSM model of IUT by . It can be either deterministic or nondeterministic, it can be strongly connected or not. If the model is not strongly connected then we assume that there exists a reliable reset that allows the IUT to be taken back t...
	2.6 Model of the Tester

	3 SYNTHESIS OF ON-LINE PLANNING TESTER FOR FSM MODELS OF IUT
	3.1 Synthesis of On-Line Planning Tester in Large
	3.3 Constructing the Gain Guards of Transitions
	3.4 Gain Function
	3.5 Adjustable Planning Horizon
	3.6 Complexity of Constructing the Tester Based on EFSM Models with Feasibility Assumption

	4 PERFORMANCE EVALUATION OF RPT USING CASE STUDY EXPERIMENTS
	4.1 The Case Study
	4.2 Model of the IUT
	4.3 Planning of Experiments
	4.4 Results and Interpretation of the Experiments

	5 EXTENDING THE REACTIVE PLANNING TESTER FOR EFSM MODELS OF IUT
	5.1 Method in general
	5.2 Simple example
	5.3 Offline computation
	5.4 On-line computation
	5.5 Example
	5.6 Handling complexity

	6 CONCLUSIONS AND FUTURE WORK
	6.1 Related Work
	For MBT a model that represents the IUT specification is required. Finite state machine (FSM) and extended finite state machine (EFSM) are commonly used for the purpose of test case derivation (Petrenko, Boroday, & Groz, 2004). An FSM can model the co...
	In an EFSM model, a given path can be classified as either infeasible or feasible. The existence of some infeasible paths is due to the variable inter-dependencies among the actions and conditions. If a path is infeasible, there is no input test data ...
	MBT can be applied for both off-line and on-line generation of test cases. In case of on-line testing, the test generation procedure derives only one test input at a time from the model and feeds it immediately to the IUT as opposed to deriving a comp...
	The test purpose can be stated in very abstract way when applying conformance (IOCO or TIOCO) relation (Briones & Brinksma, 2004). Usually the conformance relation is tested using either a completely random or some heuristic driven state space explora...
	Further advancement of test goal specification has been introduced in NModel (Veanes, Campbell, Schulte, 2007; Veanes, Campbell, Grieskamp, Schulte, Tillmann, & Nachmanson, 2008) where the IUT model presented as a model program can be composed with t...
	While distinguishing the on-the-fly test input selection methods by their planning effort, e.g., by the depth of planning horizon, the simplest and fastest method is random choice. The planning horizon of the random choice is zero steps ahead. Non-zer...
	The reactive planning testing approach introduced in this chapter is goal-directed like the methods used in TorX and TGV. The test goal in RPT can be stated also in the form of test scenario model like in NModel. For that, the tester model is construc...
	When comparing the on-line testing methods by their planning capability, the methods can be ordered by their online planning depth. The RPT (Vain, Raiend, Kull, & Ernits, 2007) involves a planner that looks ahead more than one step at a time to reach ...
	The price to pay for shorter test cases is the complexity of the planning constraints to be solved on-line to guide the selection of test stimuli. The performance advantage of RPT over pure anti-ant and random choice methods depends on many factors, l...

