IDK1531 Advanced C++4 Course

Types

Aleksandr Lenin

Tallinn University of Technology

February 11th, 2019

Lenin, A. (TUT) IDK1531 2/11/2019 1/ 101

Fundamental Types

void is an incomplete type with an empty set of values. This type cannot be
completed, objects of type void, arrays of elements of type void and references
to type void are disallowed.

std::nullptr_t is the type of the null pointer literal nullptr.

bool is a type capable of storing true and false values.

Lenin, A. (TUT) IDK1531 2/11/2019 2 /101

Integral Types

int has width of at least 16 bits. In 32/64 bit systems is it common for int to
occupy at least 32 bits.

Size modifiers:

short — type will be optimized for space and will have width at least 16 bits.
long — type will have at least 32 bits.

long long — type will have at least 64 bits.

If any size modifiers are used, the int keyword may be omitted.

Lenin, A. (TUT) IDK1531 2/11/2019 3/ 101

Common data models are the following:

o ILP32 or 4/4/4. int, long and pointer size is 32 bit.
e 32 bit OS (Microsoft Windows, Unix and Unix-like systems
e Win32 API

o LLP64 or 4/4/8. int and long size is 32 bits, pointer size is 64 bits.
e 64 bit Microsoft Windows
e Win64 API

o LP64 or 4/8/8. int size is 32 bits, long and pointer size is 64 bits.
e 64 bit Unix and Unix-like systems (Linux, Mac, *BSD, ...)

Lenin, A. (TUT) IDK1531 2/11/2019

Two sigedness modifiers:

signed — type for sign representation, the most significant bit is reserved to
represent the sign.

unsigned — type for unsigned representation.

Unsigned
b: 00000000 201111111 | |b:10000000 b:11111111
0 127(|128 255
‘—128 —1|[+0 +127
b:10000000 b:11111111||b: 00000000 b:01111111

~—

Signed

IDK1531

Computations using unsigned integral types are performed modulo the size
of the value space.

L.e., adding two unsigned int type variables a and b is computed as
a -+ bmod 232,

Adding two unsigned char type variables a and b is computed as a 4+ b mod 22.

unsigned char a = 100;

unsigned char b = 200;

unsigned char ¢ = a + b;

std::cout << (int) ¢ << std::endl; // prints 44
std::cout << (300 % 256) << std::endl; // prints 44

Lenin, A. (TUT) IDK1531 2/11/2019 6 / 101

Overflowing a signed type results in undefined behavior.

char d{127}; d++;
std::cout << (int) d << std::endl; // prints —128. This is UB.

Operations between signed and unsigned integers produce an unsigned result.

unsigned a = 10;
int b = —15;
std::cout << (a+b) << std::endl; // prints 4294967291

Lenin, A. (TUT) IDK1531 2/11/2019 7 / 101

Fixed width integer types are the following:

int8_t, int16_t, int32_t, int64_t — signed integer types with width exactly
8,16, 32, 64 bits.

uint8_t, uint16_t, uint32_t, uint64_t — unsigned integer types with width exactly
8,16, 32,64 bits.

[u]int_fast8_t, [u]int_fast16_t, [u]int_fast32_t, [u]int_fast64_t — fastest signed
integer type with width of at least 8,16, 32,64 bits.

[u]int_least8_t, [u]int_least16_t, [u]int_least32_t, [u]int_least64 t — smallest integer
type with width 8,16, 32, 64 bits.

Lenin, A. (TUT) IDK1531 2/11/2019 8 / 101

Character Types

char — the type for character representation that can be efficiently processed by
the target system.

The sigedness of char depends on the compiler and the target platform. The
char type defaults to

@ unsigned char on ARM, PowerPC architectures
@ signed char on Intel x86 and x86_ 64 architectures.
wchar_t — a type for wide character representation.
Usually has size 32 bits, sufficient to represent the entire Unicode character set.

Exception: Windows. The size of wchar_t is 16 bits, and it can encode UTF-16
character set.

Lenin, A. (TUT) IDK1531 2/11/2019 9 / 101

Fixed size character types are the following.
char8_t — type for UTF-8 character set representation.
char16_t — type for UTF-16 character set representation.

char32_t — type for UTF-32 character set representation.

The C++ standard guarantees that:

1 == sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long) <= sizeof(long long).

Lenin, A. (TUT) IDK1531 2/11/2019 10 / 101

Floating Point Types

Depending on FPU coprocessor, typically these types are:
float — IEEE-754 32 bit single precision floating point type.
double — IEEE-754 64 bit double precision floating point type.
long double — extended precision floating point type.

The type long double is not regulated by IEEE-754 and depends on the
compiler and target architecture. On Intel x86 and x86_ 64 architectures, the
type long double defaults to 80 bit x87 floating point type.

Floating point numbers support special values
@ infinity to represent a positive infinity.

@ nan to represent a NaN.

Lenin, A. (TUT) IDK1531 2/11/2019 11 / 101

CV Type Qualifiers

For any type T, including incomplete types, excluding reference and function
types, there are 3 possible specifications of type T, namely:

@ const T — const-qualified type T. An object of a constant type cannot be
modified. An attempt to modify such an object directly results in a
compile-time error, attempt to modify it indirectly (through a reference
or a pointer) results in undefined behavior.

@ volatile T — volatile-qualified type T. Prevents the compiler from
optimizing the code where such a type is present, since it is assumed that
such a type may be changed and the compiler may not be aware of it.

@ const volatile T — const-volatile-qualified type T. An object behaves as a
constant and volatile object.

Lenin, A. (TUT) IDK1531 2/11/2019 12 / 101

Type conversions w.r.t. cv-qualifications.
unqualified < const < const volatile

unqualified < volatile < const volatile

References and pointers to less cv-qualified types may be implicitly converted
to references and pointers to more cv-qualified types.

To convert a pointer or a reference of a more qualified type to a pointer or a
reference to a less cv-qualified type, const_cast must be used.

The cv-qualification of an array is the same as the cv-qualification of its
elements.

Lenin, A.) IDK1531 2/11/2019 13 / 101

The mutable specifier permits modification of a class member even if the
containing object is declared const.

Example

const struct {
int a;
mutable int b;

} x = {0,0};

x.a++; // compilation—time error
x.b++; // mutable, modification is permitted
std::cout << x.a << x.b << std::endl; // prints 01

Lenin, A.) 3 2/11/2019 14 / 101

Reference Types

A reference is an alias to an existing object or function.

A reference needs to be initialized to refer to an object. Uninitialized
references result in compilation-time errors.

A reference of some type T may be initialized with:
© an object of type T.
@ a function of type T.
@ an object implicitly convertible to type T.

Once initialized, the referred object cannot be changed, the reference sticks to
the object it refers to.

Lenin, A. (TUT) IDK1531 2/11/2019 15 / 101

A reference is initialized:
@ when a named Ivalue or rvalue reference variable is initialized
@ in a function call when one or more arguments are reference type
e when a function returns a reference type

e when a non-static reference type member is initialized

IDK1531 2/11/2019 16 / 101

A reference may refer to a complete type. L.e., there are no references to void.

Reference is not an object and therefore references do not necessarily occupy
storage (although some compilers may allocate storage).

For the same reason, there are no references to references.

References are not cv-qualified. A "const reference to type T” is an ordinary
reference to type const T.

The lifetime of a reference begins when its initialization is complete and ends
when the storage duration ends (as if it were a scalar object).

The lifetime of the referred-to object may end before the lifetime of the
reference. If this happens, such a reference is called a dangling reference.

Using dangling references is undefined behavior.

Lenin, A. (TUT) IDK1531 2/11/2019 17 / 101

An lvalue reference declarator

T& [attr] identifier

declares identifier as an lvalue reference to type T.

lvalue references are used to alias existing objects or functions, optionally with
a different cv-qualification.

Example
int x = 5; // a variable of type int
int& rx = x; // an lvalue reference to int

const int& crx = x; // an lvalue reference to const int

std:icout << x << 77 << rx << 77 << erx << std:endl; // prints 55 5
rx +=2; // it is ok to assign a new value to an lvalue reference

crx += 2; // error, cannot assign a read—only reference

std:icout << x << 77 << rx << 77 << erx << std:endl; // prints 77 7

Lenin,) IDK1531 2/11/2019 18 / 101

An rvalue reference declarator

T&& [attr] identifier

declares identifier as an rvalue reference to type T, optionally with different
cv-qualification.

rvalue references can be used to extend the lifetime of temporary objects.
lvalue references to const can extend the lifetime of temporary objects as well,
but are not modifiable through them.

Example

int x = 5; // integer of type int

const int& lrx = x + x; // an lvalue reference to const int
int&& rrx = x + x; // an rvalue reference to int

stducout << x << 77 << Irx << 77 << rrx << stdiendl; // prints 5 10 10
Irx += 10; // error, cannot assign a read—only reference

rrx += 10; // can modify through reference to non—const

std:icout << x << 77 << Irx << 77 << 1rx << std::endl; // prints 5 10 20

Lenin, A.) IDK1531 2/11/2019 19 / 101

If a reference is bound to a temporary or to a subobject, the lifetime of the
temporary is extended to match the lifetime of the reference.

Exceptions to this rule:

@ a temporary bound to the return value of a function returning a reference
is destroyed immediately after the function exits and such a function
always returns a dangling reference.

@ a temporary bound to a reference argument in a function call exists only
in the function scope. If the function returns a reference, it becomes a
dangling reference.

@ a temporary bound to a reference in the initializer used in a new
expression exists until the end of the full expression containing that new
expression, the lifetime is not extended to match the lifetime of the
initialized object.

Lenin, A. (TUT) IDK1531 2/11/2019 20 / 101

A reference may refer to an object that is equal or less cv-qualified.

int x = 2; // a variable of type int
int & rx = x; // equal cv—qualification
const int & crx = x; // more cv—qualified, ok
int & rrx = crx; // error: less cv—qualified

const int & rrx = crx; // ok

In the last line, the lvalue reference rrx is not bound to crx (there are no
references to references, remember?). rrx is bound to the same object to which
crx is bound. In this case, it is int x;

Use const__cast<T> to cast more cv-qualified reference to a less cv-qualified
reference.

Example

int x = 2;
const int & crx = x; // a reference to const int
int & rx = crx; // error, less cv—qualified

int& rx = const_ cast<int&>(crx);

// ok

Lenin,) IDK1531 2/11/2019 21 / 101

You may declare Ivalue references to functions.

void f (int a) { std::cout << a << std::endl; } // a function of type void(int)

int g() { return 2; } // a function of type int(void)
void (&rf)(int) = f; // an lvalue reference to function f()
int (&rg)() = g; // an lvalue reference to function g()

and references to arrays

int data[3];
int (&rdata)[3] = data;

Lenin, A.) IDK1531

2/11/2019 22 / 101

With the exception of a const qualified lvalue reference, Ivalue references cannot
be bound to temporaries, while rvalue references can

int& ra = 1; // error, cannot bind lvalue reference to rvalue
int&& rra = 1; // ok, bound to rvalue
const int& cra = 1; // ok, bound to read—only lvalue

rvalue references cannot bind to lvalues.

int n = 2;

int&& rnl = n; // error, cannot bind to lvalue

int&& rn2 = static_cast<int&&>(n); // ok, cast n to an rvalue
float&& rn3 = n; // ok, bound to an rvalue temporary 2.0

Lenin,) IDK1531 2/11/2019 23 / 101

It is possible to create situations in which the lifetime of the referred object
ends, but the reference remains accessible. Such cases are referred as
dangling references. Accessing such a reference is undefined behavior.

A common example, is returning a reference to an automatic variable.

Example

std ::string& £() {
std::string s(”Hello, World!”);
return s; // s is destroyed

std ::string& sref = f(); // £() returns a dangling reference
std::cout << sref; // undefined behavior, read attempt from a dangling reference

Lenin, A.) IDK1531 2/11/2019 24 / 101

Temporaries’ lifetime restrictions. Consider the following structure
struct S { int x; const int& lref; int&& rref; };

If initialized as S s{1,2,3};, the temporary 2 is bound to s. Iref, temporary 3 is
bound to s.rref, the lifetimes of the temporaries is extended to match the
lifetime of object s.

If initialized as a pointer Sx p = new S{1,2,3}, the temporary 2 is bound to s. Iref,
temporary 3 is bound to s.rref, but the lifetime of the references ended at the
end of the new statement, and p—>Iref and p—>rref are dangling references.

A function returning a reference to a temporary returns a dangling reference.

const int& f() { return 1; }
const int& result = f(); // £() returns a dangling reference

Lenin, A. (TUT) IDK1531 2/11/2019 25 / 101

Forwarding references is a special kind of references that preserve the value
category of a function argument, and makes it possible to forward it using
std :: forward, which

o forwards lvalues as lvalues Or rvalues

@ forwards rvalues as rvalues

@ prohibits forwarding Ivalues as rvalues.
Two use cases

@ Function parameter of a function template declared as rvalue reference to
cv-unqualified type template parameter.

@ auto&&, except when deduced from a brace-initialized list. auto&& is the
safest way to refer to elements in ranged-for loops.

for (auto&& e: £()) {

// e is a forwarding reference
}

auto&& a = {1, 2, 3}; // a is not a forwarding reference

Lenin, A. (TUT) IDK1531 2/11/2019 26 / 101

Pointer Types

[attr] T [cv] * [cv] identifier
A pointer is an object that stores an address of another object or a function
in memory.
Implications:
@ no pointers to references or bitfields exist
o there exist pointers to pointers

@ there exist references to pointers

Lenin, A. (TUT) IDK1531

2/11/2019 27 / 101

Every pointer is one of:

@ a pointer to an object or a function — stores the address of the first byte
occupied by the object storage in memory

@ a pointer past the end of an object — stores the address of the first byte
after the end of storage occupied by the object

@ a null pointer nullptr — stores the zero address

e a invalid (dangling) pointer — a pointer that points at a (nonexistent)
object whose lifeteime has ended

Attempts to use an invalid pointer or passing an invalid pointer as an
argument to a memory deallocation function is undefined behavior.

Lenin, A. (TUT) IDK1531 2/11/2019 28 / 101

The "address-of” operator & returns the address of a given object in memory
and may be used to initialize a pointer.

The dereference operator *+ may be used to access the pointed-to object.

Example

int x =10,y = 3;

intx p = &x; // now p points to x

std::cout << #p; // dereferencing p, printing 10

p = &y; // now it points to y

*p = 15; //dereferencing p, assigning new value to y

std::cout << *p; // printing the value of y, which is 15 now

intx* pp = &p; // a pointer to p, aka a pointer to a pointer pointing at y

std::cout << *pp; // printing the address of p
std::cout << **pp; // printing the value of y

Lenin, A.) IDK1531 2/11/2019 29 / 101

For convenience, the —> operator allows to access members of an object via a
pointer. The call object—>member is a syntactic sugar, and is equivalent to

*(obj).member.

struct S { int x; } s;
struct S *ps = &s;

s.X = 2
(+ps)-x = 2
ps—>x = 2;

Lenin,) {153 2/11/2019 30 / 101

A reference to a pointer, as any reference, is used to alias an object.

Example

int x = 3, y=5;

int* px = &x; // px is a pointer pointing at x

intx& rpx = px; // rpx is a reference to px

rpx = &y; // now px points at y

*rpx = 15; // now the value of y is 15

std::cout << *rpx; // prints 15

intx&& rval = new int(5); // rval is an rvalue reference to a pointer to an integer
std::cout << rval; // prints the address allocated by new and stored in rval
std::cout << *rval; // prints 5 (the initialized value)

delete rval; // deallocating dynamic memory

Lenin,) {153 2/11/2019 31 / 101

If const keyword appears on the left of x, such a pointer points at a constant
type. You can modify the pointer, but cannot modify the pointed-to data.

int x;

const int * px = &x; // a pointer to const int

int const * px2 = &x; // a pointer to const int

px2 = nullptr; // ok

*pX = 2; // error, modification of constant object

If const keyword appears on the right of %, such a pointer is a constant
pointer that points at a fixed address and cannot be modified. The
pointed-to object can still be modified.

int x;

int * const px = &x; // a constant pointer to an integer

px = nullptr; // error, modification of a constant pointer

*pX = 2; // ok, modification of a pointed—to non—const object

Lenin, A.) IDK1531 2/11/2019 32 / 101

Finally, if const appears on both sides of the %, such a pointer is known as a
constant pointer to a constant type. Modification of the pointer, as well as the
pointed-to object is not permitted.

int x;

int const * const px = &x; // a constant pointer to a const int

px = nullptr; // error, modification of a constant pointer

*pX = 2; // error, modification of a pointed—to const object

Due to implicit array-to-pointer conversion, an array variable is implicitly
casted to a pointer to its first element.

int x[5]{1,2,3,4,5};

int* px = x; // px points at the first integer in array x
int* px2 = &x[0]; // px2 points at the first integer in array x
int (*xpx3)[5] = &x; // px3 poins at an array of 5 integers

Lenin, A.) IDK1531 2/11/2019 33 / 101

Any pointer can be implicitly casted into a pointer to void. The inverse
conversion requires a static_cast call.

Example

char c; short s; int i; long l; long long 11;

void *vpc = &c, *vps = &s, *xvpi = &i, *xvpl = &I, xvpll = &;
char* pc = static_ cast<charx>(vpc);

short+ ps = static__cast<short+>(vps);

int* pi = static_cast<intx>(vpi);

long* pl = static_cast<long*>(vpl);

long longx* pll = static_cast<long long *>(vpll);

Lenin, A.) IDK1531 2/11/2019 34 / 101

Pointers to functions

Example

void £() {}

int g(int a) { return a; }
int h(int k) { return 2xk; }

void (xpf)() = &f; // a pointer to a function f

void (xpf2)() = f; // another pointer to a function f

void (xpf3)() = nullptr; // a pointer to type void(void) initialized with zero address
int (xpg)(int) = g; // a pointer to function g

pg(10); // &(10) is called
pg = h; // now pg points at function h
pg(10); // h(10) is called

Lenin, A.) IDK1531 2/11/2019 35 / 101

Pointers, with exception for type voids#, support increment and decrement
operations.

If a scalar k is added to a pointer of type T, then the pointer will point at a
new address, which is shifted by k * sizeof(T) compared to the initial address
the pointer was pointing at.

Example

char* p = reinterpret_ cast<char+>(0x100);

std::cout << (void*) p << std::endl; // 0x100
std::cout << (voidk) (p+1) << std::endl; // 0x101
std::cout << (void*) (p+2) << std::endl; // 0x102

int* pi = reinterpret_ cast<int*>(0x100);

std::cout << pi << std::endl; // 0x100
std::cout << (pi+1) << std::endl; // 0x104
std::cout << (pi+2) << std::endl; // 0x108

Lenin, A. (TUT) IDK1531 2/11/2019 36 / 101

The random access operator [| allows to access objects at addresses relative
to the address stored by the pointer. Let p is a pointer to type T. Then pli]
corresponds to the value at address p + i * sizeof(T).

Example

charx pc = reinterpret_ cast<charx>(0x100);
short* ps = reinterpret_ cast<short+>(0x100);
int* pi = reinterpret cast<intx>(0x100);

std::cout << (void*) pc << 7 7 // 0x100
<< (voidx) &pc[l] << 77 // 0x101
<< (voidx) &pc[2] << 77 // 0x102
<< (voidx) &pc[3] << std::endl; // 0x103

std::cout << ps << 77 // 0x100
<< &ps[l] << 77 // 0x102
<< &ps2] << 77 // 0x104
<< &ps[3] << std::endl; // 0x106

std::cout << pi << 77 // 0x100
<< &pi[l] << 77 // 0x104
<< &pi2] << 77 // 0x108
<< &pi[3] << std::endl; // 0x10C

Lenin, A. (TUT) IDK1531 2/11/2019 37 / 101

Given two pointers of the same type, the difference between them yields the
number of elements of these types that fit into a given range.

Example

struct S { int a,b,c,d; };
voidx begin = reinterpret_ cast<void*>(0x100);
void* end = reinterpret_ cast<void#>(0x120);

std::
std:
std::
std::
std::

std

cout << static cast<char*>(end) — static cast<char*>(begin); // 32

:cout << static_cast<short*>(end) — static_ cast<short+>(begin); // 16

cout << static cast<intx>(end) — static cast<int*>(begin); // 8
cout << static_cast<long*>(end) — static_ cast<long*>(begin); // 4
cout << static_cast<long long*>(end) — static cast<long longx>(begin) // 4;

:cout << staticcast<float*>(end) — static_ cast<float+*>(begin) // 8;
std::

cout << static cast<struct Sx>(end) — static_cast<struct Sx>(begin) // 2;

The only supported operations with pointers are

e Adding a pointer and a scalar (positive, negative, or zero)

@ Subtracting two pointers of the same type

It is illegal to subtract pointers of different types, as well as adding two
pointers together. Such attempts will produce compilation time errors.

Lenin, A.) IDK1531

38 / 101

An array declaration declares an object of array type.

T name [[expr]] [attr];

where:

e T is the type of elements in the array. It can be any fundamental type,
pointers, classes, enumerations, and other arrays of the same type. There
are no arrays with element type void, no arrays of references, or arrays of
functions.

@ name is any valid identifier.

@ [expr] an optional constant expression convertible to std::size_t which
evaluates to a value greater than zero (since C++14).

@ [attr] optional attributes.

int a[5]; declares a as an array object consisting of 5 continuously allocated
objects of type int.

Lenin, A. (TUT) IDK1531 2/11/2019 39 / 101

Applying cv-qualifications to array type applies the qualifiers to element type.

const int a[5]; declares an array of 5 elements of type const int.

If an array is allocated dynamically (i.e. using new expression), its size is
allowed to be zero. Accessing allocated memory block of size 0 is undefined

behavior.

int *a = new int[0]; // accessing a[0] or xa is UB
delete[] a; // it is still required to deallocate memory

An array arr of N elements may be accessed using the random access operator
[as arr [0]... arr[N—1]. Indexing starts from zero!

Lenin, A. (TUT) IDK1531 2/11/2019 40 / 101

Arrays are lvalues, they have storage and an address. However, objects of
array type cannot be modified as a whole — they cannot appear on the left
hand size of an assignment operator.

int a[2] = {0,1};
int b[2];

b =a; // error, invalid array assignment

However, due to the existence of an implicit copy-assignment operator

struct s { int a[2]; } s = {1,2}, t;
t =s;

Lenin, A.) IDK1531 2/11/2019 41 / 101

When arrays appear in context where arrays are not expected, but pointers
are, this implicit conversion converts array type to a pointer to the first
element of the array.

Example

void f(int (&ra)[3]) {} // takes a reference to an array as argument
void g(int* pa) {} // takes a pointer to element type as argument

int main()
{
int a[3] = {1,2,3};
int *p = a;
cout << sizeof(a); // 12 = 3 * sizeof(int) = 3 * 4
cout << sizeof(p); // 8, notice 64—bit architecture

f(a); // ok
g(p); // ok
g(a); // ok

Lenin, A.) IDK1531 9 42 / 101

An element type of an array may be an array type. In this case, such an array
is called multi-dimensional.

Example

// an array of 2 arrays of 3 elements each
int a[2][3] ={{1,2,3}, {4,5,6} };

Such an array can be thought of as a 2 x 3 matrix.

| \

Example

int a[2]; // an array of 2 integers

int b [2][3]; // an array of 2 arrays of 3 integers

int ¢ [2][3][4]; // an array of two 3x4 matrices of integers

int* pa = a; // a pointer to the first element in array a

int*x pb = b; // error, b is not implicitly converted to int=x

int (xpb)[3] =b; // b is converted to a pointer to the first row of b

int*%* pc = c; // error, c is not implicitly converted to intsss

int (xpc)[3][4] = ¢; // c is converted to a pointer to the first 3x4 matrix in ¢

Lenin, A. T) IDK1531

If expr is ommitted, such an array is known as an array of unknown bound,
which is sort of an incomplete type, with exception when used with an
initializer.

int a[f; // error, incomplete type
int af] = {1,2,3}; // initializes an array of 3 integers

Multidimensional arrays cannot have an unknown bound other than the first.

int a [][3]; // error, incomplete type
int a[][3] ={{1,2,3}, {4,5,6} }; // the first dimension is 2
int a[2][] ={{1,2,3}, {4,5,6} }; // error, unbounded second dimension

Lenin, A. (TUT) IDK1531 2/11/2019 44 / 101

Pointers and references to arrays of unknown bound can be created, but
cannot be initialized or assigned with objects of known bound.

IS
i

Example

extern int a [J;

int (&ra)[] = a;

int (xpa)|] = &a;

int (*pa2)[2] = &a; // error

int b[2] = {0,1};
int (&rb)[] = b // error

int (*pb)[] = // error
int (&rb2)[2] = b
int (xpb2)[2] = &b

Pointers to arrays of unknown bound
@ cannot participate in pointer arithmetic, but can be dereferenced
e cannot be used on the left of a random access operator [|

References and pointers to arrays of unknown bound cannot be used as
function arguments.

Lenin, A. (TUT) IDK1531 2/11/2019 45 / 101

Functions

[attr] [modifier] T identifier ([argument list]) [cv] [ref] [except] [attr]

[attr] [modifier] auto identifier ([argument list]) [cv] [ref] [except] [attr] [—> T]

@ [attr] any number of optional attributes

e T return type, cannot be a function type or array type, but can be
pointer type or a reference to these types

@ [arg] an optional list of function arguments

@ [cv] optional ev-qualification, only allowed in non-static member function
declarations

@ [ref] optional ref-qualification, only allowed in non-static member function
declarations

@ [except] is dynamic exception specification or noexcept specification

Lenin, A. (TUT) IDK1531 2/11/2019 46 / 101

Function modifiers may be a combination of
@ explicit — the function cannot be used in implicit conversions and copy
initialization
@ static — a function with static or thread-local storage duration and

internal linkage

@ extern — a function with static or thread-local storage duration and
external linkage

@ thread_local — states that a function has thread-local storage

@ constexpr — declares that it is possible to evaluate the value of the function
at compile time

Lenin, A. (TUT) IDK1531 2/11/2019 47 / 101

@ inline — declares a function as inline, allows the compiler to substitute
function body in-place of function calls.

@ virtual — allows a class method to be dynamically bound.
@ final — specifies that a virtual function cannot be overridden

@ override — specifies that a virtual function overrides another virtual
function (ref modifier)

@ friend — grants a function access to private and protected members of the
class where the friend declaration appears

@ mutable — permits modification of the class member declared mutable even
if the containing object is declared const

Lenin, A. (TUT) IDK1531 2/11/2019 48 / 101

A function declaration bind a function type to a name.

Function declaration may appear in any scope. A function declaration at a
class scope declares a function to be a member of a class (unless a friend
specifier is used).

Non-member function definition may appear only in the namespace scope,
member function definition may appear in class scope.

If auto is used as the return type, the trailing return type may be omitted and
will be deduced by the compiler from the type of the returned expression.

Example
auto f() {
int x = 2;
return x; // the return type is deduced to be int
}
const auto& g(int& x) {
return x; // the return type is deduced to be const int&
}

Lenin, A. (TUT) IDK1531 2/11/2019 49 / 101

If there are multiple return statements, they must all deduce to the same
return type, to avoid ambiguity.

auto a(int x) {
if (x > 0) return 2;
else return 2.5;

If there are no return statements, the deduced type is void.

auto a() {}; // the return type is deduced to be void
autox b() {}; // error, only plain auto type can be deduced from void
auto& c() {}; // error, only plain auto type can be deduced from void

Lenin, A. (TUT) IDK1531 2/11/2019 50 / 101

Once a return statement has been seen in a function, the return type deduced
from that statement can be re-used in the same function.

auto f(int x) {
if (x > 0) return x; // the return type is deduced to be int
else return f(x+1); // £’s return type is already known

If the return statement uses brace-initialized list, the return type deduction is
not allowed.

auto f() { return {0,1}; } // error

Lenin, A. (TUT) IDK1531 2/11/2019 51 / 101

Function arguments may have default values in their declarations.

int f(int a, int b=3) { return a + b; } // argument b has default value 3
std::cout << £(5,5) << std::endl; // will print 10 =5 + 5
std::cout << f(5) << std::endl; // £(5,3) is called, will print 8 =5 + 3

Arguments with default values must appear in the very last position of a
parameter list. In other words, all the arguments after the first argument with
a default value, must have default values.

Example

int f(int a=3, int b) { return a + b; } // argument a has default value 3
f(5); // ambiguity, is value 5 supplied as a value for a or b?
£(5,6); // no ambiguity

int g(int a=3, int b=4) { return a + b; }
20); // returns 7 = 3+4

€(2,2); // returns 4 = 2 + 2

g(3); // ambiguity, is a==3 or b==37

Lenin, A. (TUT) IDK1531 2/11/2019 52 / 101

In function declaration, the types of arguments are transformed according to
the following rules.

@ Argument declarators are used to determine the type of argument.

@ If the type is an array type (array of T or array of unknown bound of T),
it is converted to type pointer to T.

@ If the type is a function type T, it is converted to type pointer to T
(pointer to function).

Q@ top-level cv-qualifiers are dropped from the parameter type

For this reason, int f(int); and int f(const int); declare the same function.

Example

The following function declarations are the same:

int f(int a[3]);

int f(int[]);

int f(int* a);

int f(int* const);
int f(int* volatile);

Lenin, A. (TUT) IDK1531 2/11/2019 53 / 101

Example

int f(int a); // declaration
int g(int[10]); // declaration

// definition

int f(int const a) {
return 0;

}

// definition
int g(int* p) {
return 0O;

}

Function arguments, as well as the return type of a function, cannot be
incomplete types (i.e. declared but undefined).

Lenin, A. (TUT) IDK1531 2/11/2019 54 / 101

A function body may be one of the following:
@ a compound statement (regular function body)

@ a function try block - associates a sequence of catch statements with the
function body

@ explicitly deleted function definition =delete. Any use of a deleted function
is ill-formed and produces compilation errors.

@ explicitly defaulted function definition =default

Example

An example of a function try block

int f(int a) try {
return 0O;

} catch (const std::exception& e) {
// exception handler

} catch (...) {
// exception handler

Lenin, A. (TUT) IDK1531 2/11/2019 55 / 101

Example

Example of a deleted function

struct mytype {
void* operator new(std::size t) = delete;
void* operator new[|(std::size_t) = delete;

};

mytypex f = new mytype; // error, use of deleted function new(std::size_t)
mytypex g = new mytype[10]; // error, use of deleted function new[|(std::size t)

A\

A previously declared function cannot be redeclared as deleted, the deleted
definition of a function must be the first declaration in a translation unit.

Example
An invalid definition

int £(); // the first declaration of int f()
int f() = delete; // deleted defintition of int f(), the second declaration

A valid definition

int f() = delete; // the first declaration, deleted definition

Lenin, A. (TUT) IDK1531 2/11/2019 56 / 101

Enumeration

An enumeration is a type whose values are restricted to pre-defined set of
values.

Unscoped enumerations are of the form
enum [struct|class] name { enumerator[=constexpr]|, enumerator[=constexpr], ... }

enum [struct|class] name : type { enumerator[=constexpr], enumerator[=constexpr], ... }
enum [struct|class| name : type;

In the first type of declaration, the enumerator type is unspecified, it is an
implementation-defined integral type.

In the second and third declarations, the enumerator type is fixed.
Each enumerator is associated with the value of underlying type.

If struct or class keywords are used, the enumeration is unscoped, otherwise it
is scoped.

Lenin, A. (TUT) IDK1531 2/11/2019 57 / 101

Example

Unscoped enumeration examples:

enum Color = { RED, GREEN, BLUE };

enum Level = { LOW, MEDIUM=10, HIGH=100 };

enum Level2 : char { LOW="1", MEDIUM="m’, HIGH="h’ };
Color ¢ = RED;

Level 1 = LOW;

| A

Example
Scoped enumeration examples:

enum struct Color { RED, GREEN, BLUE };

enum class Level { LOW, MEDIUM=10, HIGH=100 };

enum class Level2 : char { LOW="I", MEDIUM="m’, HIGH="h’ };
Color ¢ = Color::RED;

Level 1 = Level:: MEDIUM;

A\

Lenin, A. (TUT) IDK1531 2/11/2019 58 / 101

Smart Pointers

Smart pointers ensure that the managed dynamically allocated object is
deleted when it is no longer used. 3 classes implement Smart Pointers:

(1]

(2]

std::unique_ptr - a smart pointer that uniquely owns dynamically allocated
object and does not share this ownership.

std::shared_ptr - a smart pointer that shares ownership of a dynamically
allocated object with other pointers.

std::weak_ptr - holds a non-owning (weak reference) to a dynamically
allocated object.

Lenin, A. (TUT) IDK1531 2/11/2019 59 / 101

A std::unique_ptr pointers are used for

@ providing exception safety to classes and functions by guaranteeing safe
memory deallocation on normal and abnormal (i.e. exception) termination

@ passing ownership of uniquely-owned objects to functions
@ acquiring ownership of uniquely-owned objects from functions
@ as an element type in move-aware containers (i.e., std::vector)

An instance of std::unique_ptr may be constructed to manage an object of
incomplete type. If the default deleter is used, the object type must be
completed by the time when the deleter is invoked.

Lenin, A. (TUT) IDK1531 2/11/2019 60 / 101

A unique pointer (std::unique_ptr) is a smart pointer that owns and manages
another object, and disposes of the object when the unique_ptr goes out of
scope.

The object is disposed of when
@ the unique_ptr object goes out of scope or is otherwise destroyed
@ the unique_ptr object is assigned another object via operator= or reset().

The object is disposed of using a deleter, which can be user-specified. The
default deleter uses the delete call which deallocates the storage and destroys
the object.

Lenin, A. (TUT) IDK1531 2/11/2019 61 / 101

A unique_ptr may own no object. Such a pointer is called empty.

std::unique_ ptr<int> p; // an empty pointer
p.reset(new int(30)); // now it manages a dynamic object

A unique_ptr may be initialized with a pointer upon creation.

std::unique ptr<int> p(new int(30));

Lenin, A.) 3 2/11/2019 62 / 101

Unique pointers are NOT copy-constructible nor copy-assignable.

std::unique ptr p(new int(30));
std::unique_ ptr q(p); // error, not copy—constructible
std::unique_prt r = p; // error, not copy—assignable

Unique pointers are, however, move-constructible and move-assignable.

std::unique ptr<int> p(new int(30));
std::unique_ ptr<int> q(std::move(p)); // q is move—constructed, p is invalidated
std::unique ptr<int> r = std::move(q); // r is move—assigned, q is invalidated

Lenin,) IDK1531 2/11/2019 63 / 101

Only non-const unique_ptr can transfer object ownership to another unique_ptr.

std::unique__ptr<int> p(new int(30)); // ok
const std::unique ptr<int> q(std::move(p)); // error
const std::unique ptr<int> r = std::move(q); // error

If the object is managed by a const-qualified std::unique_ptr, then its lifetime is
limited by the scope in which the std::unique_ptr was created.

Lenin, A.) 3 2/11/2019 64 / 101

It is possible to specify a deleter function to std::unique ptr.

Example

void deleter(int* p) {
std::cout << ”Custom Deleter” << std::endl;
delete p;

}

int main() {
std::unique_ ptr<int,void (*)(int* ptr)> p(new int(30),deleter);
return 0O;

reset() allows to change the managed object. The previous object is deleted.

std::unique ptr p(new int(30));
p.reset(new int(50)); // memory storing value 30 is invalidated.

Lenin, A.) IDK1531 9 65 / 101

release() returns a raw pointer to the managed object and releases the
ownership.

get() returns a raw pointer to the managed object (without releasing the
ownership)

std::unique_ ptr p(new int(30));

int* raw = p.release(); // p contains no managed object

p-get(); // returns nullptr, since there is no managed object
p.reset(new int(30));

p-get(): // returns a non—zero address

The assignment operator (operator=) transfers ownership between two pointers.

std :: unique ptr<int> p(new int(30));

p = std::unique ptr<int>(new int(50)); // calls reset(src.release())
p = nullptr; // the same as p.reset(nullptr)
p = std::make_unique<int>(30); // calls reset(src address)

Lenin, A.) IDK1531 2/11/2019 66 / 101

The swap() method swaps the managed objects and their corresponding
deleters between two instances of std::unique_ptr.

std ::unique ptr<int> p(new int(30)), q(new int(50));
std:cout << xp << "\t” << xq << std:zendl; // 30 50
p-swap(q);

std:cout << xp << "\t” << xq << std:zendl; // 50 30

operator bool may be used to theck if std::unique_ptr has a managed object.
Returns false, if the pointer is empty (no managed object).

Example

std::unique ptr<int> p(new int(30));

std::unique_ ptr<int> q;

// the following line prints “true false”

std::cout << std::boolalpha << p.operator bool() << ”\t” << g.operator bool();
if (p) std::cout << ”"The value of p is 7 << *p << std::endl; // is sent to stdout
if (q) std::cout << "The value of q is 7 << *q << std::endl; // is not executed

Lenin, A.) IDK1531 9 67 / 101

Instances of std::unique_ptr have dereference operators *,—> and random access
operator [|. However, smart pointer do NOT support pointer arithmetic
operators such as addition or subtraction.

A shared pointer (std::shared_ptr) is a reference counting smart pointer that
shares ownership for an object with other shared pointers.

In other words, several shared_ptr instances may share the same managed
object.

The managed object is destroyed and its storage is deallocated when the last
shared pointer owning an object

@ goes out of scope or is otherwise destroyed

@ is assigned another managed object via operator= or reset()

Lenin, A. (TUT) IDK1531 2/11/2019 68 / 101

Similar to unique pointers, shared pointers support custom deleter objects,
can be empty (can have no managed object).

Differently from unique pointers, shared pointers are copy-constructible and
copy-assignable.

Example

std ::shared ptr<int> s(new int(30));

std::shared ptr<int> t = std::make shared<int>(50); // copy—constructed, ok
std::shared_ ptr<int> u(t); // copy—constructed, ok

std::shared ptr<int> v = t; // copy—assigned, ok

std::shared ptr<int> x(std::move(t)); // move—constructed, ok

std::shared ptr<int> y = std::move(v); // move—assigned, ok

Lenin, A.) IDK1531 9 69 / 101

The use_count() method returns the number of references.

Example

std::shared ptr<int> s(new int(30));

std::cout << s.use_count() << std::endl; // prints 1
std::shared ptr<int> t(s);

std::cout << s.use_count() << std::endl; // prints 2
std::cout << t.use count() << std:endl; // prints 2
std::shared_ptr<int> u = t;

std::cout << s.use_count() << std::endl; // prints 3
std::cout << t.use_count() << std::endl; // prints 3
std::cout << u.use_count() << std::endl; // prints 3
t = std::make_shared<int>(30);

std::cout << s.use_count() << std::endl; // prints 2
std::cout << t.use count() << std:endl; // prints 1
std::cout << u.use_count() << std::endl; // prints 2

When the counter goes down to zero (use_count() returns 0), the storage of the
managed object is deallocated.

The managed object lives as long as there exist at least one shared pointer
managing this storage.

Lenin, A.) IDK1531 2/11/2019 70 / 101

unique() returns true if the object in question is managed only by the current
shared__ptr instance.

std::
std::
std:
std::
std::

shared_ ptr<int> s(new int(30));
cout << std::boolalpha << s.unique() << std::endl; // true

:shared_ ptr<int> t(s);

cout << std::boolalpha << s.unique() << std::endl; // false
cout << std::boolalpha << t.unique() << std::endl; // false

owner__before() checks if a shared pointer preceeds the other w.r.t. the
implementation-defined owner-based order. This ordering is used to allow
shared pointers to be used as keys in associative containers (i.e. std::map).

Two shared pointers compare equivalent if and only if

@ they are both empty

@ they both own the same object

See the next slide for an example.

Lenin, A. (TUT) IDK1531 2/11/2019 71 / 101

Example

std::
std:
std::
std::
std::

std::
std::
std:
std::
std::

std::
std::

std

std:

shared_ ptr<int> m = nullptr;

:shared_ ptr<int> n = nullptr;

cout << std::boolalpha << m.owner before(n) << std::endl; // false
cout << std::boolalpha << n.owner_before(m) << std::endl; // false
cout << std::boolalpha << (m == n) << std::endl; // true

shared ptr<int> s(new int(10));
shared_ ptr<int> t(s);

:cout << std::boolalpha << s.owner before(t) << std::endl; // false

cout << std::boolalpha << t.owner_before(s) << std::endl; // false
cout << std::boolalpha << (s == t) << std::endl; // true

shared ptr<int> u(new int(20));
cout << std::boolalpha << s.owner_before(u) << std::endl; // false

::cout << std::boolalpha << u.owner_ before(s) << std::endl; // true
:cout << std::boolalpha << (u == s) << std::endl; // false

Lenin, A.) IDK1531

72

72

/ 101

It is possible to create a new instance of std::shared_ptr obtained from another

shared pointer using a cast expression on its stored raw pointer.

struct B {
virtual ~B(){}

h

struct A : public B {
~AQ{}

5

int main()

{
std::shared_ ptr pb = std::make_ shared();
auto pa = std::make shared<A>();
auto pb2 = std::static_ pointer_ cast(pa);
auto pa2 = std::dynamic_ pointer cast<A>(pb2);
auto pa3 = std::const_ pointer_cast<A>(pa);

}

Lenin, A.) IDK1531

2/11/2019

73 / 101

Shared pointers share ownership of an object only by:
@ copy-constructing its value to another shared pointer
@ copy-assigning its value to another shared pointer

Constructing a new shared pointer from a raw pointer owned by another
shared pointer is undefined behavior.

A shared pointer may point at a function

Example

void deleter(void(*)()) {}
void f() { std::cout << "f()” << std::endl; }
int main(){

std::shared_ ptr<void()> p(f, deleter);

(+p)0);

Lenin, A. (TUT) IDK1531 2/11/2019 74 / 101

A shared pointer stores two pointers
@ the stored pointer (returned by get())
@ a pointer to a control block, consisting of
@ a pointer to the managed storage, or the managed storage itself
@ allocator and deallocator functions
@ reference counter
® number of weak pointers that refer to the managed object

The stored pointer is accessed by get() as well as the dereference and
comparison operators. reset() replaces the managed object.

Lenin, A. (TUT) IDK1531 2/11/2019 75 / 101

Shared pointers can share ownership of an object while pointing at another
object (storing the address of another object) managed by another smart
pointer.

Such smart pointers can be constructed from existing smart pointers using an
aliasing constructor.

Example

int a = 2;

auto p = std::make_shared<int>(10); // construct a “primary” pointer
auto q = std::shared ptr<int>(p, &a); // construct an aliased pointer

std::cout << p.use_count() << std::endl; // prints 2
std::cout << q.use_count() << std::endl; // prints 2

std::cout << p.get() << std::endl; // points somewhere in the heap
std::cout << g.get() << std::endl; // points somewhere in the stack
std::cout << *p.get() << std::endl; // prints 10

std::cout << *q.get() << std::endl; // prints 2

Lenin, A.) IDK1531 2/11/2019 76 / 101

Following the same ideas, an empty shared pointer (without any managed
object) may have a non-null stored pointer.

int a = 2;

std::shared_ ptr<int> p; // create an empty pointer

auto q = std::shared_ ptr<int>(p, &a); // create an aliased pointer

std::cout << p.use_count() << std::endl; // prints 0

std::cout << p.get() << 77 // prints 0O
<< q.get() << 77 // prints an address somewhere on the stack
<< *q.get() << std::endl; // prints 2

An empty pointer with non-zero stored address is a non-owning shared pointer.

Lenin, A.) IDK1531 2/11/2019 77 / 101

A weak pointer (std::weak_ptr) is a non-owning (weak) smart pointer that
points at an object managed by some shared pointer. It can be used to access
an object if it exists.

A weak pointer must be converted to shared pointer to obtain temporary
ownership and to access the managed object.

If the main shared pointer goes out of scope, the lifetime of the managed
object is extended until the temporary shared pointer is destroyed as well.

Similar to shared pointers, a weak pointer also stores two pointers:
@ a pointer to the control block

@ the stored pointer of the associated shared pointer (the one from which it
was constructed)

To access the stored pointer, a weak pointer first must be locked. Locking
means creating a temporary shared pointer that manages the object in
question.

Lenin, A. (TUT) IDK1531 2/11/2019 78 / 101

Example
void verifyObjectValidity (std::weak ptr<int>& wp) {
if (auto tsp = wp.lock()) {
std::cout << 7"Object exists: 7 << *xtsp << std::endl;
} else {
std::cout << ”Object has expired” << std::endl;
}
}
int main()
{
std :: weak_ ptr<int> wp;
{
auto sp = std::make_shared<int>(30);
WP = Sp;
verifyObjectValidity(wp); // prints "Object exists: 30”
verifyObject Validity (wp); // prints "Object has expired”
}

Lenin, A.) IDK1531 9 79 / 101

Lambda expressions

There are 4 types of callables in the C++ language:
@ Functions
@ Pointers to functions
@ Functors (classes with the function call operator (operator()) defined)
@ Lambda expressions

You can think of a lambda as an unnamed (anonymous) inline function.

Lenin, A. (TUT) IDK1531 2/11/2019 80 / 101

Like any function, a lambda
@ represents a callable unit of code.
@ has a return type
@ has an argument list
@ has a function body
Unlike any other function, lambda functions
@ can capture entities from enclosing scope by value and by reference
@ can be defined inside another function body

e cannot have default arguments

Lenin, A. (TUT) IDK1531 2/11/2019 81 / 101

[[capture]][(args)] [spec| [except] [attr] [—>ret] { body }

@ [capture] — an optional comma separated list of objects captured from the
enclosing scope. If the lambda captures nothing, it has an empty capture
list]

@ [(args)] — an optional comma separated list of arguments
@ [spec] — an optional set of specifiers: mutable,constexpr,consteval

@ [except] — an optional exeption specification (throw(exception)) or a noexcept
specification

@ [attr] — any number of attributes (optional)

@ [—> ret] — an optional trailing return type (used when the return type
cannot be deduced from the return statement)

Lenin, A. (TUT) IDK1531 2/11/2019 82 / 101

The meaning of the specifiers is as follows:

@ mutable — allows body to modify parameters captured by value, as well as
to call non-const member functions

@ constexpr — states that the function call is a constexpr function — a function
whose outcome can be deduced during compilation time.

@ consteval — specifies that the function call is an immediate function — every
call to the function must produce a compile time constant, implies inline
modifier.

Note: consteval and constexpr modifiers cannot be used at the same time.

A consteval function is a constexpr function that is also inline.

Lenin, A.) IDK1531 2/11/2019 83 / 101

Capture list allows to introduce captured entities from the enclosing scope into
the inner scope of the functions.

[means ”"capture nothing”, the function does not use any local variables from
an enclosing scope.

[a,b,c] means "capture variables a,b,c by value”. Entities captured by value,
are copied.

[&a,&b,&c] means "capture variables a,b,c by reference”.
[=] means "capture everything you can by value”
[&] means "capture everything you can by reference”

[=, &a] means "capture everything you can by value, but capture a by
reference”

[&, a] means "capture everything you can by reference, but capture a by value”

Capturing by reference does not extend the lifetimes of the captured entities.
If the lambda call happens when the lifetime of the object, captured by
reference, has ended, undefined behavior occurs.

Lenin, A. (TUT) IDK1531 2/11/2019 84 / 101

Example
Define f as a callable object that takes no arguments and returns 42:

auto f = [|{ return 42; };

We call a lambda as we would call any other function.

std::cout << f() << std::endl;

An omitted argument list it is inferred to an empty list.
The inferred return type depends on the function body

o If the function body contains a return statement, the return type is
inferred from the type of expression that is returned.

@ Otherwise the return type is void.

Lenin, A. (TUT) IDK1531 2/11/2019 85 / 101

Example
Create a function fthat compares two strings and returns true if the first
string is shorter than the second one.

auto f = [|(const std::string& a, const std::string& b) { return a.size() < b.size(); };

| A

Example

Create a function g that returns true if a string, provided as argument, is
longer than a given threshold sz.

std::size_t sz = 10;
auto g = [&sz](const std::string& str) { return str.size() > sz; };

Lenin, A. T) IDK1531

86 / 101

Example

int val = 10;

auto f = [|(int a, int b) { return a+b; };

auto g = [val](int a) —> bool { return a < val; };
auto h = [&val]() { val = 20; };

std::cout << £(10,10) << std::endl; // prints 20
std::cout << std::boolalpha
<< gd) << // prints true
<< g(15) << std::endl; // prints false
h(); std::cout << val << std::endl; // prints 20

Lenin, A.) IDK1531 2/11/2019 87 / 101

A function may return a callable object, which also means it is possible to
return a lambda function from a function.

std :: function<int (int)> func() {
return [|(int x) { return x; };

)

Alternatively, a function can return an instance of a class that has a callable
object as a data member.

If a function returns a lambda, the function must not return a reference to a
local variable, and the lambda must not contain reference captures.

Lenin, A. (TUT) IDK1531 2/11/2019 88 / 101

By default, a lambda may not change the value of the variable it captures by
value.

Lambdas may change the value of variables captured by reference, if this
reference is not const.

If we want to change the value of the variable captured by value, we must
follow the lambda argument list with keyword mutable.

Lambdas marked as mutable may not omit the argument list, even if it is empty.

Example
What is the type of j? What is the value of j?

void func() {
std::size_t vl = 42;
auto f = [v1] () mutable { return ++vl; };
vl = 0;
auto j = f();

}

Lenin, A. (TUT) IDK1531 2/11/2019 89 / 101

Function Adapt

Function template std::bind is a general purpose function adapter.

It generates a new callable object from a given callable object, adjusting the
argument list of the original callable object.

auto newCallable = std::bind(oldCallable,argList);

Example

#include <functional>

using std::placeholders::_ 1;
using std::placeholders::_ 2;

int diff (int a, int b) { return a — b; }
auto func = std::bind(diff, 1,10); // func(int x) calls diff (x,10)
auto func2 = std::bind(diff, 2, 1); // func(int x, int y) calls diff (y,x)

int main() {

std::cout << func2(9,5) << std::endl; // computes 5 — 9
std::cout << func(12) << std::endl; // computes 12 — 10
return 0;

Lenin, A. (TUT) IDK1531 2/11/2019 90 / 101

Example

#include <functional>

using std::placeholders::_1;

void f(std::string s, int n) { std::cout << string 7 << s << 7”7 7 << integer 7 << n
<< std::endl; }

auto f2 = std::bind(f,”Foo”,5); // £2() calls f(”Foo”,5)

auto 3 = std::bind(f,”Foo”, 1); // f2(int x) calls f(”Foo”,x)

auto f4 = std::bind(f,_1,100); // fA(string s) calls f(s,100)

int main() {

2(); // string Foo integer 5
f2(”Notfoo”); // string Foo integer 5
f2("Notfoo”,10); // string Foo integer 5

£3(10); // string Foo integer 10
f4(”Hello,World!”); // string Hello, World! integer 100
return 0;

Lenin, A.) IDK1531 9 91 / 101

Argument to std::bind() that are not placeholders are copied into the callable
object that std::bind() returns.

Sometimes we need to ass certain arguments to std::bind by reference (i.e.,
std::ostream& cannot be copied).

To pass an object to std::bind() without copying it, we can use function
std::ref(). Similarly, the std::cref() function passes its argument by a constant
reference into the callable.

Example
#include <functional>
using std::placeholders::_ 1;

void print(std::ostreamé& os, const std::string& msg) { os << msg << std::endl; }
auto wrapper = std::bind(print, std::ref(std::cout), 1);

int main()

{
print(std::cout, ”A message”);
wrapper(”Another message”);
return 0O;

Lenin, A. (TUT) IDK1531 2/11/2019 92 / 101

Function Wrapper

Class template std::function is a polymorphic function wrapper that can store,
copy, and invoke callable targets:

o functions
e lambda expression

@ bind expression

function objects
@ pointers to member functions
@ pointer to a data member (data member accessor)

std:: function is copy-constructible and copy-assignable.

Lenin, A. (TUT) IDK1531 2/11/2019 93 / 101

Example
std :: function stores another function

void printNum(int a) { std::cout << a << std::endl; }
int main() {
std :: function<void(int)> funcl = printNum;
func1(10); // prints 10
return 0;

| \-H
\,

Example
std:: function stores a lambda expression

void printNum(int a) { std::cout << a << std::endl; }
int main() {
std :: function<void()> func2 = [|(){ printNum(42); };
func2(); // prints 42
return 0O;

5\

Lenin, A. T) IDK1531

Example
std:: function storing a bind expression

void printNum(int a) { std::cout << a << std::endl; }

int main() {
std :: function<void()> func3 = std::bind(printNum,42);
func3(); // prints 42

return 0;

Example

|
5\

std:: function storing a function object

void printNum(int a) { std::cout << a << std::endl; }
struct FObj {
void operator()(int a) const {
std::cout << a << std::endl;
}

int main() {
std :: function<void(int)> func4 = FObj();
func4(42); // prints 42
return 0O;

Lenin, A. T) IDK1531

std:: function stores a pointer to a member function

struct Foo {

int

Foo(int num) { a = num; }

int getNum() const { return a; }
void setNum(int i) { a = i; }

int a;

main() {

std:: function<int(const Foo&)> f getNum = &Foo::getNum;
std :: function<void(Foo&,int)> f setNum = &Foo::setNum;
const Foo f0o(100);

std::cout << f getNum(foo) << std::endl; // prints 100
Foo f002(200);

std::cout << f getNum(foo2) << std::endl; // prints 200
f setNum(fo02,500);

std::cout << f getNum(foo2) << std::endl; // prints 500
return 0O;

Lenin, A.) IDK1531

96 / 101

std:: function stores a data member accessor

struct Foo { int a; };

int main()
{
const Foo foo{100};
Foo fo02{200};
std :: function<int(Foo const&)> f num = &Foo::a;

std::cout << f num(foo) << std::endl; // prints 100
std::cout << f_num(foo2) << std::endl; // prints 200
return 0;

Lenin, A.) IDK1531 2/11/2019 97 / 101

Example

std:: function stores a call to a member function and object

struct Foo {
Foo(int x) { a = x; }
bool compare(int x) { return a == x; }
int a;

h

int main()

{
Foo foo(100);
using std::placeholders:: 1;
// passing a copy of instance foo
std:: function<bool(int)> f cmp = std::bind(&Foo::compare, foo, 1);
std::cout << std::boolalpha << f cmp(2) << std::endl; // prints false
std::cout << std::boolalpha << f c¢mp(100) << std::endl; // prints true
// passing instance foo by reference
std:: function<bool(int)> f_cmp2 = std::bind(&Foo::compare, &foo, _1);
std::cout << std::boolalpha << f cmp2(2) << std::endl; // prints true
std::cout << std::boolalpha << f_cmp2(100) << std::endl; // prints false
return 0O;

}

Lenin, A.) IDK1531 g 9 98 / 101

Type Definitions

The typedef keyword creates type definitions.

// simple type definition
typedef unsigned long ulong;

// the following objects have the same type
unsigned long 11;
ulong 12;

// more complex type definition
typedef int int_t, *intp_t, (&fp)(int,ulong), arr_ t[10];

int_ta =4 // integer alias

intp_ t pa = &a; // pointer alias

fp x = foo; // reference to a function int (&)(int,ulong)
int al[10]; // an array with 10 elements

arr_t a2; // the same type as al

std::cout << sizeof(a2) << std::endl; // prints 40

// the typedef keyword may be used anywhere in the specifier sequence
long unsigned typedef int long ullong;

Lenin, A.) IDK1531

99 / 101

Type Aliases

A type alias is a name that refers to a previously defined type (similar to
typedef)

using ulong = unsigned long;

// the following objects have the same type
unsigned long 11;
ulong 12;

using int_ t = int;
int_ta=4;

using intp_ t = intx;
intp_t pa = &a;

using fp = int(&)(int,ulong);
fp x = foo;

Lenin, A.) IDK1531 2/11/2019 100 / 101

9

THANK YOU
FOR

YOUR

ATTENTION

ANY QUESTIONS?

