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Some general remarks

Given a set of data points, partition them into groups with respect
to chosen similarity criteria.

I Attribute or variable is the smallest- indivisible element of the
data.

I Feature - is the set of attributes composed either with respect
to some properties or by some algorithm. NB! The attributes
of a feature may be selected on the basis of the associations
between them, but the associations itself does not represent
the part of the feature. Roughly speaking feature does not
contain any explicit information about the relationships
between its attributes.

I Pattern is defined by two sets of conditions. The first set
defines the elements (features or attributes) and the second
one defines associations between the attributes.

I In some cases notion of the Templates is also used.



Introduction

Given a set of data points, partition them into groups with respect
to chosen similarity criteria.

I Data summarization.

I Discover the structure of the set.

I Part of pre processing



Feature selection
Given a set of data points, partition them into groups with respect
to chosen similarity criteria.

I Filter Models
I Term Strength

TS = P (t ∈ Ȳ |t ∈ X̄)

I Predictive Attribute Dependence
I Entropy

R = −
m∑
i=1

[
pi log(pi) + (1− pi) log(1− pi)

]
I Hopkins Statistic

H =

r∑
i=1

βi

r∑
i=1

(αi + βi)

.

I Wrapper models



Representative-Based Algorithms

I The k-Means Algorithm.

I The Kernel k-Means Algorithm

I The k-Medians Algorithm

I The k-Medoids Algorithm



The k-Means Algorithm

Let data set D to be clustered into K clusters.
Generate K centroids randomly. Repeat

I For Each point of D computed distances to each of K
centroids.

I The point is assigned the class label of the closest centroid.

I Update centroid coordinates for each class by computing the
mean values.

Until converge.



Hierarchical Clustering Algorithms

I Bottom-Up Agglomerative Methods

I Top-Down Divisive Methods



Bottom-Up Agglomerative Methods

Initialize n× n distance matrix M Repeat

I Find the pair of closest clusters and merge them

I Update matrix M

Until termination criterion



Group-Based Statistics

I Best (single) linkage

I Worst (complete) linkage

I Group-average linkage

I Closest centroid

I Variance based criterion

I Ward’s method



EM-algorithm

Let us consider K-Means from the probabilistic point of view.

I (E-step) Each data point of the set D has a probability
belonging to cluster j, which is proportional to the scaled and
exponentiated Euclidean distance to each representative Yj .
In the k-means algorithm, this is done in a ”hard” way, by
choosing the smallest Euclidean distance to the representative
of Yj .

I (M-step) The center Yj is the weighted mean over all the data
points where the weight is defined by the probability of
assignment to cluster j. The hard version of this is used in
k-means, where each data point is either assigned to a cluster
or not assigned to a cluster (i.e., 0-1 probabilities).



EM-algorithm

Assumption: the data was generated from a mixture of k
distributions with probability distributions G1 . . .Gk. Each
distribution Gi represents a cluster and is also referred to as a
mixture component.

I (E-Step) Given the current value of the parameters in ,
estimate the posterior probability P (Gi|Xj ,Θ) of the
component Gi having been selected in the generative process,
given that we have observed data point Xj . The quantity
P (Gi|Xj ,Θ) is also the soft cluster assignment probability
that we are trying to estimate. This step is executed for each
data point Xj and mixture component Gi.

I (M-Step) Given the current probabilities of assignments of
data points to clusters, use the maximum likelihood approach
to determine the values of all the parameters in Θ that
maximize the log-likelihood fit on the basis of current
assignments.



Grid- and density- based methods

One of the major problems with distance-based and probabilistic
methods is that the shape of the underlying clusters is already
defined implicitly by the underlying distance function or probability
distribution. Possible solutions:

I Grid- based methods

I Density- based methods

I Graph- based algorithms

I Nonnegative matrix factorization



Grid-based method

I Discretize each dimension of data D into r ranges;

I Determine dense grid cells at a given density level;

I Create graph in which dense grids are connected if they are
adjacent;

I Determine connected components of graph;

I return points in each connected component as a cluster;



Density-based methods

Definition
Data point is defined as a core point, if it contains at least τ data
points.

Where τ is the density parameter.

Definition
A data point is defined as a border point, if it contains less than
τ points, but it also contains at least one core point within the
radius ε.

Definition
A data point that is neither a core point nor a border point is
defined as a noise point.



DBSCAN

I Determine core, border and noise points of D at level (ε, τ);

I Create graph in which core points are connected if they are
within Eps of one another;

I Determine connected components in graph;

I Assign each border point to connected component with which
it is best connected;

I Return points in each connected component as a cluster;



Cluster Validation

I Internal Cluster Validation
I Sum of square distances to centroids;
I Intracluster to intercluster distance ratio;
I Silhouette coefficient;
I Probabilistic measure;

I External Cluster Validation, used when ground truth
information is available.

I Confusion matrix;
I Cluster purity;
I Gini index;



Cluster Purity

I Let mij represent the number of data points from class
(ground-truth cluster) i that are mapped to (algorithm determined)
cluster j.

I Denote number of data points in true cluster i are by Ni,the
number of data points in algorithm-determined cluster j by Mj .

Ni =

kd∑
j=1

mij ; Mj =

kt∑
i=1

mij ;

I For a given algorithm-determined cluster j, the number of data
points Pj in its dominant class is: Pj = max

i
mij .

I Purity index is defined

Pa =

kd∑
j=1

Pj

kd∑
j=1

Mj

.



Gini index

I Gini index for algorithm determined cluster j is defined:

Gj = 1−
kt∑
i=1

(
mij

Mj

)2

.

I Average Gini index is defined as follows:

G =

kd∑
j=1

GjMj

kd∑
j=1

Mj

.



Relations to the Entropy

Ej = −
kt∑
i=1

(
mij

Mj

)
log

(
mij

Mj

)
.

E =

kd∑
j=1

EjMj

kd∑
j=1

Mj

.


