

Real-time Operating Systems and
Systems Programming

Scheduling, Processes

Classical scheduling

● Two goals:
● Maximize processor usage
● Minimize response time of tasks

● Evaluation:
● Task waiting time
● Processor throughput
● Total execution time of tasks
● Average response time of tasks

Scheduling decisions

● Preemptive or non-preemptive
● Static or Dynamic
● Soft or Hard (Best effort vs Strict)

Scheduling strategies

● Round-robin
● First come first served (FIFO queue)
● Prioritized scheduling
● Deadline prioritization
● Shortest first

Implementation details

● Election table
● Priority queue list
● For complex scheduling, two level scheduling

can be implemented
● High level decisions on general policy that affect

longer periods
● Lower level scheduler decides reordering for

immediate future

Priority scheduling

● Red is of higher priority, but with longer
deadline

Rate monotonic scheduling

● Priority is inverse of the period
● Short periods are high priority and vice versa

Earliest deadline first

● Priorities are assigned according to deadlines

Cyclic Executive

Cyclic Executive

● Offers 3 priorities for tasks
● Interrupt if pre-emption is needed (high priority)
● HW Clock with cooperative scheduling (middle

priority)
● Base code with first come first served priority

(low priority)
● Inflexible, since does not offer task “aging” or

dynamic scheduling
● Simple to test

Tasks exceeding time-slot

● Might be possible to split larger tasks.
● Starts on even ticks, then yields time to others
● Finishes on odd ticks

Idle

● Idle task could be replaced with low-priority
things

● Also called Burn

Posix scheduling

● Phtread scheduling with function:
● sched_setscheduler()
● SCHED_FIFO – realtime
● SCHED_RR – realtime with timeslots
● SCHED_OTHER – normal scheduling
● SCHED_BATCH – less prioritized normal (Linux

2.6.16+)
● SCHED_IDLE – lowest possible priority (Linux

2.6.23+)

SCHED_FIFO

● FIFO processes pre-empt any OTHER and
BATCH processes.

● If FIFO process is pre-empted it will resume as
soon as higher-priority processes are blocked

● If becomes runnable, inserted to queue
● sched_setscheduler() puts in front of queue if

runnable (ignoring POSIX)
● sched_yield() to send self to end of list

SCHED_RR

● Round Robin enchances FIFO
● Each process gets maximum time quantum
● If runs longer, put to end of queue
● sched_rr_get_interval() will return the quantum

SCHED_OTHER

● Normal way of things
● Processes run according to the nice value

● nice() or setpriority() used to set the value

● The priority increases each quantum processes
are ready, but denied time

● SCHED_BATCH assumes CPU-intensive
process which is not interactive and it gets a
penalty in priority

Permissions

● CAP_SYS_NICE permission needed
● or /etc/security/limits.conf

● Unprivileged processes can set
SCHED_OTHER for the same user

● Can be overriden
● Processes running under SCHED_IDLE cannot

change to something other without permissions

Miscellaneous

● Child processes inherit their parents'
scheduling policy

● Real-time processes need memory locking
(mlock() and munlock()) to avoid paging
delays

● A non-blocking loop in _FIFO or _RR priority
will lock the computer unless a shell is
scheduled on same level prior to running it for
killing it off. Remember when debugging.

Process creation and destruction

● Unix offers 4 system calls for process creation,
destruction and waiting for them to finish:
● exec() family
● fork()
● wait()
● exit()

Loading of a process

● Binary executable contains header, (program)
text, data, relocation information and symbol
table. Text and data will be loaded with program
Executable file Process memory

HEADER TEXT

TEXT (program) DATA

DATA (initialized) (BSS)

BSS (=uninitialized data) free mem

RELOCATION STACK

SYMBOL TABLE (can be stripped) USER BLOCK (in kernel adr space)

exec() family

● Exec loads a binary executable into memory
and starts a process.

- execl : full file path, arguments as chars
- execv : full file path, arguments as array
- execle : full file path, arguments as chars,
environment

extern char **environ;
int execl(const char *path, const char* arg, ...);
int execv (const char *path, char *const argv[]);
int execle(const char *path,

const char *arg, ..., char * const envp[]);

Environment

● getenv()
● see also putenv()

exec() family (2)

● The real function is execve()

fork()

wait()

waitpid()

system()

atexit()

Demon

Zombie

Process

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

