
OpenJML and SMT solvers

Leonidas Tsiopoulos

ITI8610 Software Assurance Course, Module II, Lecture 4 - 15/11/2018

Precursors to OpenJML

• JML was first used in an early extended static checker (ESC/Java) and was
implemented in a set of tools called JML2.

• The second generation of ESC/Java, ESC/Java2, was made current with Java 1.4
and with the definition of JML.

• JML2 tools were based on hand-crafted compilers and the maintenance and
update effort was overwhelming as Java evolved.

• A new approach was needed, one that built on an existing compiler to leverage
further developments in that compiler but allowed easy integration with a Java
IDE environment, and was readily maintainable and extensible.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

OpenJML - Introduction

• OpenJML is an implementation of JML tools built by extending the OpenJDK Java
tool set.

• OpenJDK has a readily extensible architecture, although it is quite amenable to
extension since it has a complex compilation process with many components.

• The result is a suite of JML tools for Java 8 that provides static analysis,
specification documentation, and runtime checking, an API that is used for other
tools, uses Eclipse as an IDE, and can be extended for further research.

• The main drawback is that in an Eclipse-integrated system, the Eclipse compiler is
used (as is) for Java compilation and the OpenJML/OpenJDK compiler is used as a
back-end tool for handling JML and verification tasks.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

OpenJML command-line tool

• Ability to parse and type-check current JML

• Ability to perform static verification checks using back-end SMT solvers

• Ability to explore counterexamples (models) provided by the solver

• Partial implementation of JML-aware documentation generation

• Proof of concept implementation of runtime assertion checking

• JMLUnitNG has used OpenJML to create a test generation tool, using OpenJML’s
API to access the parsed specifications

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

Eclipse Java development environment OpenJML plug-in

• Ability to parse and type-check JML showing any errors or warnings as
Eclipse problems, but with a custom icon and problem type

• Ability to check JML specifications against the Java code
• Verification conditions are produced from the internal ASTs (Abstract Syntax

Trees) and submitted to a back-end Satisfiability Modulo Theories (SMT)
solver, and any proof failures are shown as Eclipse problems.

• Ability to use files with runtime checks along with Eclipse-compiled files

• Ability to explore specifications and counterexamples within the GUI

• Functionality integrated as Eclipse menus, commands, and editor windows

ITI8610 Software Assurance, Module III, Lecture 5: OpenJML and SMT solvers

Exploring Counterexamples from Static Checking

• The Eclipse GUI enables exploring counterexamples produced by failed
static checking much more effectively than previous JML tools.

• The Eclipse GUI for OpenJML interprets the counterexample information
and relates it directly to the program as seen in the Eclipse editor windows.

• Previously, other tools created verification conditions, shipped them to a
back-end solver, which produced counterexample information that was
essentially a dump of the prover state and was notoriously difficult to
debug.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

OpenJML back-end SMT solvers – What is SMT?

• SMT solvers are useful for verification, proving the correctness of
programs, software testing based on symbolic execution, and for program
synthesis.

• Computer-aided verification of computer programs often uses SMT solvers.

• In computer science and mathematical logic, the Satisfiability Modulo
Theories (SMT) problem is a decision problem for logical formulas with
respect to combinations of background theories expressed in classical first-
order logic with equality.
• Examples of theories: Real numbers, integers, theories of data structures like

lists, arrays, bit-vectors, ...

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

SMT Instances

• An SMT instance is a formula in first-order logic, where some function and
predicate symbols have additional interpretations, and SMT is the problem of
determining whether such a formula is satisfiable.

• An SMT instance is a generalization of a Boolean SAT instance in which various
sets of variables are replaced by predicates from corresponding underlying
theories.
• Boolean SAT problem is the problem of determining if there exists

an interpretation that satisfies a given Boolean formula, i.e., it asks whether the
variables of a given Boolean formula can be consistently replaced by the values
TRUE or FALSE in such a way that the formula evaluates to TRUE.

• E.g., "a AND NOT b" is satisfiable and "a AND NOT a" is unsatisfiable.

• SMT formulas provide a much richer modeling language than is possible with
Boolean SAT formulas.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

Verification and Testing with SMT Solvers

• For verification of programs a common technique is to translate pre-
conditions, post-conditions, loop conditions, and assertions into SMT
formulas in order to determine if all properties can hold.

• Another important application of SMT solvers is symbolic execution for
analysis and testing of programs.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

OpenJML back-end SMT solvers

• OpenJML translates JML specifications into SMT-LIB format and passes the
proof problems implied by the Java+JML program to back-end SMT solvers.

• OpenJML can use any SMT-LIBv2-compliant solver.
• Z3, CVC4, Yices, ...
• Simplify was the theorem prover of the Extended Static Checkers ESC/Java and

still supported by OpenJML.

• Success in checking the consistency of the specifications and the code will
depend on:
• (a) the capability of the back-end SMT solver,
• (b) the particular encoding of code + specifications into SMT by OpenJML, and
• (c) the complexity and style in which the code and specifications are written.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

OpenJML Z3 back-end SMT solver

• Supported theories: empty theory,

linear arithmetic, nonlinear arithmetic,

bit-vectors, arrays, datatypes,

quantifiers, strings

• Advanced algorithms for quantifier

instantiation and theory combination.

• Z3 integrates a DPLL-based SAT solver, a

core theory solver for equalities and

uninterpreted functions, satellite solvers

and an engine for quantifiers.

To get started:

https://rise4fun.com/z3/tutorial/guide

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

https://rise4fun.com/z3/tutorial/guide

OpenJML CVC4 back-end SMT solver

• CVC4 works with a version of first-order logic with polymorphic types.
• http://cvc4.cs.stanford.edu/web/

• Several built-in base theories: rational and integer linear arithmetic, arrays,
tuples, records, inductive data types, bit-vectors, strings, and equality over
uninterpreted function symbols (“empty theory”).

• Support for quantifiers through heuristic instantiation.

• CVC4 is fundamentally similar to other modern SMT solvers like Z3: it is a DPLL
solver, with a SAT solver at its core and a delegation path to different decision
procedure implementations, each in charge of solving formulas in some
background theory.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

http://cvc4.cs.stanford.edu/web/

OpenJML and Simplify theorem prover

• Simplify is a theorem prover for program checking developed at HP Labs.

• Simplify is the proof engine of the Extended Static Checkers ESC/Java.

• The goal of ESC is to prove, at compile-time, the absence of certain run-
time errors, such as out-of-bounds array accesses and unhandled
exceptions.

• The ESC approach first processes source code with a verification condition
generator, which produces first-order formulas asserting the absence of the
targeted errors, and then submits those verification conditions to the
theorem prover.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

OpenJML and Simplify theorem prover (cont.)

• Input to Simplify is an arbitrary first-order formula, including quantifiers.

• Simplify handles propositional connectives by backtracking search and
includes complete decision procedures for the supported theories
(untyped first-order logic with function symbols and equality, arithmetic,
maps, partial orders, ...).

• To test whether a formula is satisfiable, Simplify performs a backtracking
search, guided by the propositional structure of the formula, attempting to
find a satisfying assignment of truth values to atomic formulas that makes
the formula true.

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

OpenJML Yices 2 back-end SMT solver

• Yices 21 is an SMT solver that decides the satisfiability of formulas
containing uninterpreted function symbols with equality, real and integer
arithmetic, bit-vectors, scalar types, and tuples.

• Both linear and nonlinear arithmetic is supported.

• Yices 2 includes a congruence-closure algorithm inspired by Simplify’s E-
graph and used an approach for theory combination based on the Nelson-
Oppen method (also used in Simplify and other SMT solvers like Z3)
complemented with lazy generation of interface equalities.

1 http://yices.csl.sri.com/

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

http://yices.csl.sri.com/

OpenJML and Testing

• JMLUnitNG1 is an automated unit test generation tool for JML-annotated
Java code, including code using Java 1.5+ features such as generics,
enumerated types, and enhanced for loops.

• JML assertions are used as test oracles.

• Tests can be generated for OpenJML RAC.

• Testing a class (or set of classes) with JMLUnitNG involves:
1. Generating the test classes

2. Compile the classes under test with OpenJML

3. Compile the generated (test) classes with a regular Java compiler

4. Run the tests.

1 http://insttech.secretninjaformalmethods.org/software/jmlunitng/

ITI8610 Software Assurance, Module II, Lecture 4: OpenJML and SMT solvers

http://insttech.secretninjaformalmethods.org/software/jmlunitng/

The following slides are based on material presented by Leonardo de
Moura and Nikolaj Bjørner in various presentations on Z3, found on:

http://leodemoura.github.io/slides.html

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on
OpenJML

http://leodemoura.github.io/slides.html

Basics - Language of logic

• Functions , Variables, Predicates
• f, g, x, y, z, P, Q, =

• Atomic formulas, Literals
• P(x,f(y)), Q(y,z)

• Quantifier free formulas
• P(f(a), b)  c = g(d)

• Formulas, sentences
• x . y . [P(x, f(x))  g(y,x) = h(y)]

Language: Signatures

• A signature  is a finite set of:
• Function symbols:

F = { f, g, … }

• Predicate symbols:

P = { P, Q,=, true, false, … }

• And an arity function:
 N

• Function symbols with arity 0 are constants

• A countable set V of variables
• disjoint from 

Language: Quantifier free formulas

• The set QFF(,V) of quantifier free formulas is the
smallest set such that:

 QFF ::= a  Atoms atoms

|   negations

|  ’ bi-implications

|   ’ conjunction

|   ’ disjunction

|  ’ implication

Language: Formulas

• The set of first-order formulas are obtained by adding the
formation rules:

 ::= …

|  x .  universal quant.

|  x .  existential quant.

• Free (occurrences) of variables in a formula are those not
bound by a quantifier.

• A sentence is a first-order formula with no free variables.

Theories

• A (first-order) theory T (over signature ) is a set of
(deductively closed) sentenes (over  and V)

• Let DC() be the deductive closure of a set of sentences .
• For every theory T, DC(T) = T

• A theory T is constistent if false  T

• We can view a (first-order) theory T as the class of all
models of T (due to completeness of first-order logic).

Models (Semantics)

• A model M is defined as:
• Domain S; set of elements.

• Interpretation, fM : Sn S for each f  F with arity(f) = n

• Interpretation PM  Sn for each P  P with arity(P) = n

• Assignment xM  S for every variable x  V

• A formula  is true in a model M if it evaluates to true under the
given interpretations over the domain S.

• M is a model for the theory T if all sentences of T are true in M.

T-Satisfiability

• A formula (x) is T-satisfiable in a theory T if there is a model
of DC(T   x (x)). That is, there is a model M for T in which
(x) evaluates to true.

• Notation:

M ⊨T (x)

T-Validity

• A formula (x) is T-valid in a theory T if  x (x)  T.
That is, (x) evaluates to true in every model M of T.

• T-validity:

⊨T (x)

Checking Validity – the morale

• Theory solvers must minimally be able to:

• check unsatisfiability of conjunctions of literals.

Clauses – CNF conversion

Generally SMT solvers work with formulas in Conjunctive Normal Form (CNF).

is not in CNF.: 5 (3)x y z x     

Clauses – CNF conversion

: 5 (3)x y z x     

' : (5) (5)

(3)

(3) ()

p x p x

p y z x

p y p z x

       

     

    

Equi-satisfiable CNF formula

Clauses - CNF

• Main properties of basic CNF:

• Result F is a set of clauses.

•  is T-satisfiable iff CNF() is.

• size(CNF())  4(size())

•   paux CNF()

Preprocessing of formulas for SMT solver

Simplify

Variable elimination

if-then-else elimination

…

𝐹

Solver

Modular Architecture is
a “must have”

Equivalence Preserving Simplifications

Simplify

𝐹

𝐹′

Examples:
𝑥 + 𝑦 + 1 − 𝑥 − 2 ↦ 𝑦 − 1

𝑝 ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑝 ↦ 𝑝

Example

Variable
Elimination

Proof
builder

Model
builder

Example

Variable
Elimination

Proof
builder

Model
builder

𝑀

𝑀,𝑀(𝑎) = 𝑀(𝑏) + 1

Example

Variable
Elimination

Proof
builder

Model
builder

𝑏 → 5

𝑏 → 5, 𝑎 → 6

Simple QF_BV (bit-vector) solver

Simplify

Variable elimination

𝐹

Bit-blasting

Tseitin CNF converter SAT Solver

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories: An Appetizer

Is formula F satisfiable
modulo theory T ?

SMT solvers have

specialized algorithms for T

Z3 is a collection of

Symbolic Reasoning Engines

DPLL
Simplex Rewriting

Superposition

Congruence
Closure Groebner

Basis


elimination

Euclidean
Solver

Solver

Satisfiability Modulo Theories (SMT)

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Satisfiability Modulo Theories (SMT)

Arithmetic

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Satisfiability Modulo Theories (SMT)

ArithmeticArray Theory

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Satisfiability Modulo Theories (SMT)

ArithmeticArray Theory
Uninterpreted

Functions

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Approaches to linear arithmetic

• Fourier-Motzkin:
• Quantifier elimination procedure

x (t  ax  t’  bx  cx  t’’)  ct  at’ ct’  bt’’

• Polynomial for difference logic.

• Generally: exponential space, doubly exponential
time.

• Simplex:
• Worst-case exponential, but

• Time-tried practical efficiency.

• Linear space

Combining Theory Solvers: Nelson-Oppen procedure

Initial state: L is set of literals over 1  2

Purify: Preserving satisfiability,
convert L into L’ = L1  L2 such that
L1  T(1,V), L2  T(2,V)
So L1  L2 = Vshared  V

Interaction:
Guess a partition of Vshared

Express the partition as a conjunction of equalities.
Example, { x1 }, { x2 , x3 }, { x4 } is represented as:
: x1  x2 x1  x4 x2  x4 x2 = x3

Component Procedures:
Use solver 1 to check satisfiability of L1  
Use solver 2 to check satisfiability of L2  

Example Theory in Z3: Arrays

• Functions: F = { read, write }

• Predicates: P = { = }

• Convention a[i] means: read(a,i)

• Non-extensional arrays TA:
• a, i, v . write(a,i,v)[i] = v

• a, i, j, v . i  j  write(a,i,v)[j] = a[j]

• Extensional arrays: TEA = TA +
• a, b. ((i. a[i] = b[i])  a = b)

Suggested reading for JML and contracts

• Paper: ”Design by Contract with JML”.

• JML reference manual (updated occasionally)

• Book: Deductive Software Verification – The KeY Book
• Chapters 3, 7 and 8 especially. Incrementally introducing more advanced

concepts for JML.

• Paper: ”Desugaring JML Method Specifications” for additional help for
understanding of JML.

• Relevant papers on chosen tool (SMT Solver or other) by each group.

ITI8610 Software Assurance, Module III, Lecture 5: OpenJML and SMT solvers

