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Data Normalization

Missing Entries

Incorrect and Inconsistent Entries

Scaling and Normalization: Different features represent different
scales and not always comparable.

▶ Normalization Let jth attribute has mean µj and standard deviation σj

then jth attribute value xj
i of the record X̄i may be normalized as

follows

zji =
xj
i − µj

σj
(1)

▶ Min - max scaling:

yji =
xj
i −min(xj)

max(xj)−min(xj)
(2)

S. Nõmm ( CS TalTech) Data Mining: Lecture 4 24.09.2024 2 / 23



Principal Component Analysis

Problem: Significant number of correlations may exist between different
attributes. Usually used after the mean centering (subtracting the mean of
the data set from each data point). The goal of PCA is to rotate the data
into a coordinate system where the greatest amount of variance is
captured in a smaller number of dimensions.
Let D be n× d data matrix and C d× d covariance matrix. Each element
cij of the matrix C is the covariance between the columns i and j of
matrix D

cij =

n∑
k=1

xikx
j
k

n
− µiµj ∀i, j ∈ {1 . . . d} (3)

Let µ̄ = (µ1 . . . µd) then

C =
DTC
n

− µ̄T µ̄ (4)
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Principal Component Analysis

The covariance matrix C is positive semi-definite

v̄TCv̄ =

(
Dv̄
)TDv̄

n
− (µ̄v̄)2 (5)

which is equal to the variance of 1 -dimensional points in Dv̄ ≥ 0. PCA
allows to determine orthonormal vectors v̄ maximizing v̄TCv̄. Since C is
positive semi-definite

C = PΛP T (6)

P contains orthonormal eigenvectors of C and diagonal matrix Λ -
corresponding nonnegative eigenvalues.
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Principal Component Analysis

Both eigenvectors and eigenvalues have a geometric interpretation.

It may be shown that
(
d
2

)
covariances of transformed features are zero.

Matrix Λ is the covariance matrix after axis rotations.

Eigenvectors with large eigenvalues preserve greater variance and
referred as principal components

Transformed data matrix is computed as follows

D′ = DP (7)

S. Nõmm ( CS TalTech) Data Mining: Lecture 4 24.09.2024 5 / 23



Singular Value Decomposition (SVD)

Closely related to principal component analysis.

Formally defined as factorisation into three matrices.

D = QΣP T

As a part of preparation for the Closed Book Test 1 students are
required acquire the knowledge about SVD independently. See pages
44-48 in Agarwal’s Data Mining book. One have to answer the
questions about the meaning and properties of the matrices Q, Σ and
P , explain how to apply it on practice and describe the result of its
application. Also one should be able to explain similarities and
differences to the PCA.
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Linear regression: probably the oldest machine learning
technique
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coefficient.

Compute coefficients of
the linear equation

ŷ = ax+ b

Evaluate the model

In multivariate case it is required to identify coefficients of the model

ŷ = a1x1 + a2x2 + . . .+ anxn + b.

This leads the necessity to choose variables (perform model building).
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Linear regression

Correlation coefficient.

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

where, n - is the sample size, x and y are the variable of interest.

−1 ≤ ρ ≤ 1

Assumption there are exist α and β such that for any i = 1, . . . , n
yi = αxi + β + εi holds. Assumption: ε is sufficiently small normally
distributed.

The goal of regression is to find estimates of the coefficients α and β,
such that for a and b

yi = axi + b+ ε̂i

sum of squares of ε̂i would be minimal. NB! notation α̂ and β̂ is also
widely use.
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Least squares method
Least squares method:

a =

∑n
i=1 xiyi∑n
i=1 x

2
i

; b = ȳ − ax̄
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For an arbitrary number of variables:

y = b1x1 + . . .+ bnxn + b0

then
b̂ = (XTX)−1XT y.

where each row of matrix X is input vector with 1 in the first position.
Assumption: variables x (independent variables) are uncorrelated.S. Nõmm ( CS TalTech) Data Mining: Lecture 4 24.09.2024 9 / 23



Model validation

Coefficient of determination R2 and adjusted R2.

Significance of the model and model coefficients.

Verify assumption that residuals are normally distributed.

Residual sum squares. RSS =
∑N

i=1(yi − xTi β)
2.

Sum squares of the regression SSR =
∑N

i=1(ŷi − ȳ)2.

Total sum squares or sum of squares about the mean
SST =

∑N
i=1(yi − ȳ)2.

R2 computed as the ratio of Sum squares of the regression to total
sum squares or one minus ratio of Residual sum squares to total sum
squares whereas adjusted R2 is one minus ratio of residual sum
squares computed for n− 1 to Total sum squares for n− p
observation points.
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Model building (feature selection)

Let us suppose that observed process has p independent variables
x1, . . . , xp and one dependent variable y. Should one build the regression
equation using all p variables or not?

Are all the variables x1, . . . , xp uncorrelated?

Which subset of variables result in a ”better” model?

How to prove that as a result of adding or deleting a variable model
quality has improved?
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”Butler tracking company” example

Independent variables: Distance to drive and number of parcels to
deliver. Dependent variable: time.

Distances to drive for each assignment: 100, 50, 100, 100, 50, 80, 75,
65, 90, 90.

Number of parcels to deliver: 4, 3, 4, 2, 2, 2, 3, 4, 3, 2

Time in hours: 9.3, 4.8, 8.9, 6.5, 4.2, 6.2, 7.4, 6, 7.6, 6.1.

Pearson correlation coefficient between distance and time is 0.81.
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”Butler tracking company” example continued
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Model 1

Is significant p = 0.004,
F = 15.1846 whereas
R2 = 0.6641.

Model 2

Is significant p = 0.000276,
F = 32.9 whereas adjusted
R2 = 0.87.

Is it enough to say that model
2 is more precise?
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Quality comparison
To compare different models residual sum of squares (RSS) is used.

Hypothesis statements: H0 : RSSs ≤ RSSc H1 : RSSs > RSSc.

Test statistic (empirical parameter) for ANOVA:

Fstat =

(
RSSs − RSSc

m

)(
RSSc

n− p− 1

)−1

where RSSc is the residuals sum squares of model with more variables,
RSSs - is the residuals sum squares of model with less variables, m
number of variables added or removed, n is the number of observation
points, p - is the number of variables in more complicated model.

Rejection rule for α (significance level), degrees of freedom: first is
the number of variables added or removed, second is n− p− 1.
Decision:

▶ (if adding variables) rejected null hypothesis proves that adding
variables caused model quality to increase significantly.

▶ (if deleting variables) rejected alternative hypothesis proves that
deleting variables did not cause model quality to significant decrease.
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”Butler tracking company” example continued

RSS1 = 15.8713, RSS2 = 2.2994 NB! Observe that corresponding
MATLAB notation is SSE!!!

choose α = 0.05 degrees of freedom: first will be 1 (one variable
(number of parcels)) were added, second 7 (n = 10, p = 2).

Rejection rule: reject H0 if Fstat > 5.5914

Compute Fstat = 17.4411. (use table, or MATLAB or EXCEL)

Reject H0. Adding the variable has increased the model quality.
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Linear model building 1

Choose or determine all the hyperparameters. Possible order
limitations, backward elimination / forward selection/ batch
processing, set the level of significance and threshold for correlation.
These parameters also define stopping criteria.

Stop when: model is significant, and goodness parameters as
expected OR no more variables to add or delete OR maximal or
minimal order is reached etc.

Investigate if available explanatory variables (predictors) are linearly
independent. Strong dependencies between variables chosen as
”independent” lead problems with inverting matrix X. Compute
multicollinearity matrix where element in ith row and jth column is
Pearson correlation coefficients computed for variables i and j. Based
on this table determine subset(s) of variables which are linearly
independent.
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Linear model building 2
Repeat

Apply mean squares (or other technique) to build the model from selected
variables.

Evaluate significance- and quality- of the model. For quality observe determination
coefficient and error. For significance use F - test and t-test variable wise.

If model fail goodness or significance check then return to the previous model and
choose another set of variables to add/delete.

Starting from second iteration prove, using F - test, that as a result of
adding/deliting variables model quality has improved/did not decreased
significantly.

If adding/deliting variables was not successful return to the previous model and if
possible chose another variable(s) to add /delete or report the model from previous
step.

If goodness criteria (quality and significance) is met stop and return the model.

If goodness criteria was not met but adding deleting variables proved to be
successful chose the set of variables to be added or deleted (t-test) on the next
step.

Until stopping criteria is reached.

Report the results.
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Linear model building 3

Reminder p - is the number of variables n is the sample size.

F -test of overall significance in regression analysis.

Test for model significance. H0 : b1 = . . . = bp = 0, H1 :
∃i : 1 ≤ i ≤ p&bi ̸= 0.

Test statistic:

F =

n∑
i=1

(ŷi − ȳ)2

p− 1
n∑

i=1

(yi − ŷi)
2

n− p

Rejection rule: Determine using F-table or corresponding software
function with chosen significance level, n degrees of freedom in
denominator and p degrees of freedom in nominator.
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Linear model building 4

F -test to determine significance of change in model quality caused
by adding variables

▶ H0 : RSSS ≤ RSSC , H1 : RSSS > RSSC .
▶ Test statistic:

F =

RSSS −RSSC

m
RSSC

n− p− 1

▶ Rejection rule: Determine using F-table or corresponding software
function with chosen significance level, n− p− 1 degrees of freedom in
denominator and m degrees of freedom in nominator.

t - test on individual regression coefficients
▶ H0 : bi = 0, H1 : bi ̸= 0.
▶ Test statistic: t = b̂i/se(b̂i)
▶ Use t - table or corresponding function to find rejection rule for chosen

significance and n− 2 degrees of freedom.
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Linear model building 5

Begin

Initialize hyperparameters
Investigate multicollinearity

Apply chosen technique to 
find model coefficients

Model is 
significant?

Model quality 
above threshold?

Return to the previous 
model and add/remove 
another set of variables

Adding / deleting 
variables justified?

End

Choose variables to be 
added / removed 

No Different 
variable set?

Return model or 
report.

No

No

No

Different 
variable set?

Yes

Yes

Yes

Yes

Yes No
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Nonlinear regression

By replacing independent variables X with a nonlinear mapping ϕ(X).

This will lead
fθ(X) = θTϕ(X)

This process is referred as basis function expansion.

Example: Polynomial regression has basis function
ϕ(X) = [1, x, x2, . . . , xd]. The model remains linear in the
parameters.
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Linear model building 5
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Exercises for self studies

Prepare your own data set for regression.

Prepare your own implementation of PCA

Either implement Mean Squares method or make yourself familiar
with the existing in R techniques for regression models building.

The goal of the practice is to compare the results of iterative
regression model building against using PCA and regression model
building in one step.
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