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EM-algorithm

Let us consider K-Means from the probabilistic point of view.

(E-step) Each data point of the set D has a probability belonging to
cluster j, which is proportional to the scaled and exponentiated
Euclidean distance to each representative Yj . In the k-means
algorithm, this is done in a ”hard” way, by choosing the smallest
Euclidean distance to the representative of Yj .

(M-step) The center Yj is the weighted mean over all the data points
where the weight is defined by the probability of assignment to cluster
j. The hard version of this is used in k-means, where each data point
is either assigned to a cluster or not assigned to a cluster (i.e., 0-1
probabilities).
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EM-algorithm

Assumption: the data was generated from a mixture of k distributions
with probability distributions G1 . . .Gk. Each distribution Gi represents a
cluster and is also referred to as a mixture component.

(E-Step) Given the current value of the parameters in Θ, estimate the
posterior probability P (Gi|Xj ,Θ) of the component Gi having been
selected in the generative process, given that we have observed data
point Xj . The quantity P (Gi|Xj ,Θ) is also the soft cluster
assignment probability that we are trying to estimate. This step is
executed for each data point Xj and mixture component Gi.

(M-Step) Given the current probabilities of assignments of data
points to clusters, use the maximum likelihood approach to determine
the values of all the parameters in Θ that maximize the log-likelihood
fit on the basis of current assignments.
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Gaussian

Gaussian or normal distribution. Its probability density function is
given by

N (x|µ, σ) = 1√
2πσ2

exp
(
− 1

2σ2
(x− µ)2

)
where µ is the mean,σ is the variance and

√
2πσ2 is the normalization

constant.

Multivariate Gaussian or Multivariate Normal (MVN). Probability
density function is given by.

N (x|µ,Σ) = 1

(2π)d/2|Σ|1/2
exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
where µ is the mean vector, Σ is covariance matrix of the data set, d
is the dimensionality of the data set.
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Geometric interpretation

N (x|µ,Σ) = 1

(2π)d/2|Σ|1/2
exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
Expression under the exponent is Mahalanobis distance between point
x and mean.
Perform an eigendecomposition of Σ.

Σ−1 = U−TΛU−1 = UΛ−1UT =

D∑
i=1

1

λi
uiu

T
i

where ui is the i’th colum of U (ith eigenvector).
Rewrite Mahalanobis distance and denote yi = uTi (x− µ)

(x− µ)TΣ−1(x− µ) = (x− µ)T
D∑
i=1

1

λi
uiu

T
i (x− µ)

=

D∑
i=1

1

λi
(x− µ)Tuiu

T
i (x− µ) =

D∑
i=1

y2i
λi

.
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Geometric interpretation: example

(x− µ)TΣ−1(x− µ) =

D∑
i=1

y2i
λi

.

Contours of equal probability density of a gaussian lie along ellipses.
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Likelihood

Likelihood: Roles of parameters and outcomes distinguish likelihood
from probability. Probability describes how possible the outcome
before data is available, given the values of parameter. Likelihood
describe possibility of parameter values given available data.

▶ Discrete: Let X be a discrete random variable and p its probability
mass function then

L(θ|x) = pθ(x),

is called likelihood function of θ given the outcome x.
▶ Continuous: Let X be a continuous random variable and f its density

function.
L(θ|x) = fθ(x).

is called likelihood function of θ given the outcome x.

NB! Note the difference with conditional probabilities.
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Prior and posterior

It is presumed that new data is expected during the process.

Prior Prior probability is the probability of the event (before
collection of a new data).

Posterior Posterior probability of the event is the probability of the
event (after collection of a new data). Easy to memorize: Posterior
probability is proportional to likelihood multiplied by prior probability.
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Maximal Likelihood Estimate for MVN

Theorem

If one have N samples xi ∽ N (µ,Σ) then the maximal likelihood estimate
(MLE) for the parameters is given by

µ̂ =
1

N

N∑
i=1

xi ≜ x̄

Σ̂ =
1

N

( N∑
i=1

xix
T
i

)
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Gaussian Mixture Model

LVM - latent variable models

Mixture of Gaussians

p(xi|θ) =
K∑
k=1

τkN (xi|µk,Σk).

where τk are the mixing weights, µk are the means and Σk are the
covariance matrices for each base distribution of the mixture.

Applications:
▶ Black box density model to be used in data compression,outlier

detection etc.
▶ Clustering. Fit the mixture model and then compute p(zi = k|x, θ) -

The posterior probability that point i belongs to cluster k.
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reminder: Bayes rule

NB! This is short reminder of Bayes theorem.

We will return to Bayesian theory in the next chapter.

Let A and B are two events, whereas P (B) ̸= 0. Then

P (A|B) =
P (B|A)P (A)

P (B)

Computational example.
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Mixture models for clustering

The posterior probability that point i belongs to cluster k is referred
as the responsibility of cluster k for point i. According to Bayes rule:

ri,k = p(zi = k|xi, θ) =
p(zi = k|θ)p(xi|zi = k, θ)∑K

k′=1 p(zi = k′|θ)p(xi|zi = k′, θ)

This procedure is referred as soft clustering. NB! In the mixture case
we never observe variables zi.

Link to hard clustering using MAP estimate

z∗i = argmax
k

ri,k = argmax
k

log p(xi|zi = k, θ) + log p(zi = k|θ).
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Presence of latent variables makes complicated to compute ML
estimates. Introduce negative log likelihood function.

NLL(θ) = − 1

N
log p(D|θ).

Let x be the observed variables and zi be the hidden or missing
variables. The goal is to maximize the log likelihood of the observed
data.

ℓ(θ) =

N∑
i=1

log p(xi|θ) =
N∑
i=1

log
[
p(xi, zi|θ)

]
.

Complete data log likelihood could not be computed because zi is
unknown.

ℓC(θ) =

N∑
i=1

log p(xi, zi|θ).

Expected complete data log likelihood

Q(θ, θt−1) = E[ℓc(θ)|D, θt−1]

=
∑
i

∑
k

ri,k log τk +
∑
i

∑
k

rr,k log p(xi|θk).
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EM for GMM

E step:

ri,k =
τkp(xi|θ

(t−1)
k )∑

k′ τk′p
(
xi|θ(t−1)

k′

)
M step: Optimize Q with respect to the θ and τ .

τk =

∑
i ri,k
N

µk =

∑
i ri,kxi
rk

Σk =

∑
i ri,k(xi − µk)(xi − µk)

T

rk
=

Σiri,kxix
T
i

rk
− µkµ

T
k
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Example
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S. Nõmm ( CS TalTech) Data Mining: Lecture 7 15.10.2024 15 / 21



Clustering overview

EM estimates the parameters of mixture.

EM may be referred as parametric method. Model is described by the
parameters of clusters.

Other techniques: Affinity propagation, mean shift,spectral clustering
etc.

How model is described for other clustering techniques?
Representative? Hierarchical? Density-based?

What is clustering model?
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Related topics

Self organizing maps, will be discussed later (together with Neural
Networks).

Outlier analysis.
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Cluster Purity. NB! Not unsupervised any more!!!

Let mij represent the number of data points from class (ground-truth
cluster) i that are mapped to (algorithm determined) cluster j.

Denote number of data points in true cluster i are by Ni,the number of data
points in algorithm-determined cluster j by Mj .

Ni =

kd∑
j=1

mij ; Mj =

kt∑
i=1

mij ;

For a given algorithm-determined cluster j, the number of data points Pj in
its dominant class is: Pj = max

i
mij .

Purity index is defined

Pa =

kd∑
j=1

Pj

kd∑
j=1

Mj

.
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Gini index

Gini index for algorithm determined cluster j is defined:

Gj = 1−
kt∑
i=1

(
mij

Mj

)2

.

Average Gini index is defined as follows:

G =

kd∑
j=1

GjMj

kd∑
j=1

Mj

.
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Rand index

No assumptions about the clustering structure is required. Measures the
similarity between two assignments. Let K1 and K2 be two index
assignments. Furthermore let a be the number of pairs of elements that
are in the same subset for K1 and in the same subset for K2. Let b be the
number of pairs of elements that are in different subsets for K1 and in a
different subsets for K2.

Let C be the ground truth clustering assignment and K assignment
produced by the algorithm: then

RI =
a+ b

Cn
2

where n is number of samples.

May not be usable in the case of large numbers of clusters.
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Exercises for self practice

Please note this is not a mandatory Home Assignment, nevertheless some
or all of the exercises may be included into Home Assignments.

Exercises

Implement EM algorithm.

Compare performance of your implementation of EM algorithm to the
performance of k-means.

Could you formally verify if given set is gaussian? (question to refresh
yor knowledge of probability and statistics)
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