
Course ITI8531: Software Synthesis
and Verification

Lecture 13: Acacia+ LTL Synthesis - II

Spring 2019

Leonidas Tsiopoulos

leonidas.tsiopoulos@taltech.ee

Avoiding the Classical Approach to LTL Synthesis

• LTL synthesis is a challenging problem due to 2EXPTIME theoretical
complexity and lack of scalable algorithms for determinization of automata
and solving games.

• There are some LTL-based synthesis approaches offering „Safraless“
solutions to avoid the very complex determinisation step and also better
algorithms working on „symbolic“ representation of the state space during
the game.
• Even translating LTL formulae to symbolic automaton in the first place.

• More for this and other „Safraless“ approaches in the 4th lecture.

• Acacia+ and the techniques around it is one such „Safraless“ approach.

30.04.2019 2

Acacia+: A tool for LTL synthesis

• Main contributions:
• Efficient symbolic incremental algorithms based on antichains for game

solving.
• Synthesis of small winning strategies, when they exist.
• Compositional approach for large conjunctions of LTL formulas.
• Performance is better or similar to other existing tools but its main advantage

is the generation of compact strategies.

• Application scenarios:
• Synthesis of control code from high-level LTL specifications.
• Debugging of unrealizable specifications by inspecting compact counter

strategies.
• Generation of small deterministic automata from LTL formulas, when they

exist.

30.04.2019 3

Acacia+ Safraless approach

30.04.2019 4

• Safety games are the simplest games to solve!
• Details and comparison to other games of other LTL-based synthesis

approaches in Lectures III and IV

Acacia+ Safraless approach

30.04.2019 5

• Safety games are the simplest games to solve!
• Details and comparison to other games of other LTL-based

synthesis approaches in Lectures III and IV

Acacia+ and LTL Transformation to Automata (1)

• An infinite word automaton is a tuple A = (Σ,Q, q0, α, δ) where:
• Σ is the finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• α ⊆ Q is a set of final states and

• δ ⊆ Q × Σ × Q is the transition relation.
• For all q ∈ Q and all σ ∈ Σ, δ(q, σ) = {q´| (q, σ, q´) ∈ δ}.

• A is deterministic if ∀q ∈ Q・∀σ ∈ Σ・|δ(q, σ)| ≤ 1.

• A is complete if ∀q ∈ Q・∀σ ∈ Σ・δ(q, σ) = ∅.

30.04.2019 6

Acacia+ and LTL Transformation to Automata (2)

• A run of A on a word w = σ0σ1・・・∈ Σω is an infinite sequence of states ρ = ρ0ρ1

・・・∈ Qω such that ρ0 = q0 and ∀i ≥ 0・qi+1 ∈ δ(qi, ρi).

• The set of runs of A on w is denoted by RunsA(w).

• The number of times state q occurs along run ρ is denoted by Visit(ρ, q).

• Three acceptance conditions (a.c.) are considered for infinite word automata. A
word w is accepted by A if:

• Non-deterministic Büchi : ∃ρ ∈ RunsA(w)・∃q ∈ α・Visit(ρ, q) = ∞
• Runs visit final states infinitely often.

• Universal Co-Büchi : ∀ρ ∈ RunsA(w)・∀q ∈ α・Visit(ρ, q) < ∞
• Runs visit final states finitely often.

• Universal K-Co-Büchi : ∀ρ ∈ RunsA(w)・∀q ∈ α・Visit(ρ, q) ≤ K
• Runs visit at most K final states.

30.04.2019 7

Acacia+ and LTL Transformation to Automata (3)

• The set of words accepted by A with the non-deterministic Büchi a.c. is
denoted by Lb(A).
• This implies that A is a non-deterministic Büchi word automaton (NBW).

• Similarly, the set of words accepted by A with the universal co-Büchi and
universal K-co-Büchi a.c., are denoted respectively by Luc(A) and Luc,K(A).
• With those interpretations, A is a universal co-Büchi automaton (UCW) and

that (A,K) is a universal K-co-Büchi automaton (UKCW) respectively.

• By duality, Lb(A) = 𝐿uc(𝐴) for any infinite word automaton A.

• Also, for any 0 ≤ K1 ≤ K2, Luc,K1(A) ⊆ Luc,K2(A) ⊆ Luc(A).

30.04.2019 8

Infinite automata and LTL

• NBWs subsume LTL, i.e., for an LTL formula φ, there is a NBW Aφ (possibly
exponentially larger) such that Lb(Aφ) = {w|w ⊨ φ}.

• By duality, one can associate an equivalent UCW with any LTL formula φ:

• Take A¬φ with the universal co-Büchi a.c., so

• Luc(A¬φ) = 𝐿b(A¬φ) = Lb(Aφ) = {w|w ⊨ φ}.

30.04.2019 9

Turn-based Automata for Realizability of Games (1)

• To reflect the game point of view of the realizability problem the notion of turn-
based automata is used to define the specification.

• A turn-based automaton A over the input alphabet ΣI and the output alphabet ΣO

is a tuple A = (ΣI, ΣO, QI, QO, q0, α, δI, δO) where:

• QI,QO are finite sets of input and output states respectively,

• q0 ∈ QO the initial state,

• α ⊆ QI ∪ QO is the set of final states,

• δI ⊆ QI × ΣI × QO and δO⊆ QO × ΣO × QI are the input and output transition
relations.

• A is complete if for all qI∈ QI, and all σI ∈ ΣI, δI(qI, σI) ≠ ∅, and for all qO ∈ QO and
all σO ∈ ΣO, δO(qO, σO) ≠ ∅.

30.04.2019 10

Turn-based Automata for Realizability of Games (2)

• Turn-based automata A run on words from Σω.

• A run on a word w = (o0∪ i0)(o1∪ i1)・・・∈ Σω is an infinite sequence of states ρ
= ρ0ρ1・・・∈ (QOQI)

ω such that ρ0 = q0 and for all j ≥ 0,

(ρ2j, oj, ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI.

• All acceptance conditions we saw carry over to turn-based automata.

• Every UCW (resp. NBW) with state set Q and transition set Δ is equivalent to a
turn-based UCW (tbUCW) (resp. tbNBW) with |Q| + |Δ| states:
• the new set of states is Q ∪ Δ,
• final states remain the same,

• and each transition r = q
𝜎
𝑖
∪ 𝜎

𝑜
q´ ∈ Δ where σo ∈ ΣO and σi ∈ ΣI is split into a

transition q
𝜎
𝑜

r and a transition r
𝜎
𝑖

q´.

30.04.2019 11

Example of tbUCW

30.04.2019 12

• tbUCW for Fq → (pUq) where I = {q} and
O = {p}

• Output states QO = {1, 4, 6, 8} are
depicted by squares and input states QI

= {2, 3, 5, 7, 9} by circles
• T stands for the sets ΣI or ΣO, depending

on the context, ¬q (resp. ¬p) stands for
the sets that do not contain q (resp. p),
i.e. the empty set.

• At state 1, if controller does not assert p
and next the environment does not
assert q, then the run is in state 4. From
this state, whatever the controller does,
if the environment asserts q, then the
controller loses, as state 6 will be visited
infinitely often.

• A strategy for the controller is to assert p all the time,
therefore the runs will loop in states 1 and 2 until the
environment asserts q. Afterwards the runs will loop in
states 8 and 9, which are non-final.

Finite state strategies

• We know that if an LTL formula is realizable, there exists a finite-state strategy
that realizes it [PR89].

• Finite-state strategies are represented as complete Moore machines in Acacia+.

30.04.2019 13

• The LTL realizability problem reduces to decide, given a tbUCW A over inputs ΣI

and outputs ΣO, whether there is a non-empty Moore machine M such that
L(M) ⊆ Luc(A).

• The tbUCW is equivalent to an LTL formula given as input and is constructed by
using tools Wring or LTL2BA.

Bounding the number of visited final states

30.04.2019 14

Lemma 1. Given a Moore machine M with m states, and a tbUCW A with n states,
if L(M) ⊆ Luc(A), then all runs on words of L(M) visit at most m×n final states.

Proof. The infinite paths of M starting from the initial state define words that are
accepted by A. Therefore in the product of M and A, there is no cycle visiting an
accepting state of A, which allows one to bound the number of visited final states
by the number of states in the product.

Corollary. L(M) ⊆ Luc(A) iff L(M) ⊆ Luc, mxn(A)

Reduction to a bounded universal K-co-Büchi
automaton

Lemma 2. Given a realizable tbUCW A over inputs ΣI and outputs ΣO with n
states, there exists a non-empty Moore machine with at most n2n+2 + 1 states
that realizes it.

Proof. In the paper. Re-using an older result by Safra.

Theorem. Let A be a tbUCW over ΣI, ΣO with n states and K = 2n(n2n+2 + 1) (from
above proof). Then A is realizable iff (A,K) is realizable.

30.04.2019 15

Determinization of UKCWs

• In the previous lecture we saw how an LTL formula can be
transformed to a tbUKCW in a stepwise manner.

• What remains before solving the safety game and realize with a
Moore machine the winning strategy for the system (if it exists)
against the environment is to determinize the tbUKCW.

• The deterministic tbUKCWs can be viewed as safety games.

30.04.2019 16

Determinization of UKCWs

• Lemma: UKCWs are determinizable.

• Sketch of Proof: Let A = (Σ, Q, q0, α, Δ, K) be a UKCW.

• For each state q, count the maximal number of final states visited by
runs ending up in q.
• Extending the usual subset construction with counters.

• Set of states F: counting functions F from Q to [-1,0,...,K+1].
• The counter of a state q is set to −1 when no run up to q visited final states.

• Initial counting function F0: q → (q0 ∈ α) if q = q0, -1 otherwise.

• Final states are functions F such that ∃q: F(q) > K.
• The final states are the sets in which a state has its counter greater than K.

30.04.2019 17

Determinization of tbUKCWs

• Let A be a tbUKCW (ΣO, ΣI, QO, QI, q0, α, ΔO, ΔI) with K ∈ ℕ.
• Let Q = QO ∪ QI and Δ = ΔO ∪ ΔI.

• Let det(A,K) = (ΣO,ΣI,FO, FI, F0, α´, δO, δI) where:
• Set of states FO: counting functions FO from QO to [-1,0,...,K+1].

• Set of states FI: counting functions FI from QI to [-1,0,...,K+1].

• Initial counting function F0: q ∈ QO → (q0 ∈ α) if q = q0, -1 otherwise.

• α´ = {F ∈ FO ∪ FI| ∃q, F(q) > K}.
• succ(F, σ) = q → max{min(K + 1, F(p) + (q ∈ α)) | q ∈ Δ(p, σ), F(p) ≠ −1}

• There is a successor state if the run up to p visited finaal states.

• δO = succ|FO × ΣO , δI = succ|FI × ΣI

30.04.2019 18

Reduction to Safety Games

• The game G(A,K) can be defined as follows:
• it is det(A,K) where input states are viewed as Player I’s states (env.) and

output states as Player O’s states (system).

• G(A,K) = (FO, FI, F0, T, safe) where safe = F\α´ and T = {(F, F´) |

∃σ ∈ ΣO∪ ΣI , F´ = succ(F, σ)}.

Theorem 2 (Reduction to a safety game). Let A be a tbUKCW over
inputs ΣI and outputs ΣO with n states (n > 0), and let K = 2n(n2n+2 + 1).
The specification A is realizable iff Player O has a winning strategy in
the game G(A,K).

30.04.2019 19

Safety Game

• A game arena is a tuple G = (SO, SI, s0, T, safe) where SI, SO are disjoint sets of
player states, s0 ∈ SO is the initial state, T ⊆ SO × SI ∪ SI × SO is the transition
relation and safe is the safety consition.

• A finite play on G of length n is a finite word π = π0π1 . . . πn ∈ (SO ∪ SI)
∗

s. t. π0 = s0 and for all i = 0, . . . , n − 1, (πi, πi+1) ∈ T.

• A winning condition W is a subset of (SOSI)
*.

• A play π is won by Player O if π ∈ W, otherwise it is won by Player I.

• A strategy λi for Player i (i ∈ {I,O}) is a mapping that maps any finite play whose
last state s is in Si to a state s´ s. t. (s, s´) ∈ T.

• The outcome of a strategy λi of Player i is the set OutcomeG(λi) of infinite plays π =
π0π1π2 . . . s.t. for all j ≥ 0, if πj ∈ Si, then πj+1 = λi(π0, . . . , πj).

• A strategy λO for Player O is winning if OutcomeG(λO) ⊆ safeω.
• Must void the bad states!

30.04.2019 20

Safety Game

30.04.2019 21

Safety Game

30.04.2019 22

Safety Game

30.04.2019 23

Safe states
System

controller

wins if it has

a strategy to

keep the

system in

safe states.

Example of tbUCW

30.04.2019 24

• tbUCW for Fq → (pUq) where I = {q} and
O = {p}

• Output states QO = {1, 4, 6, 8} are
depicted by squares and input states QI

= {2, 3, 5, 7, 9} by circles
• T stands for the sets ΣI or ΣO, depending

on the context, ¬q (resp. ¬p) stands for
the sets that do not contain q (resp. p),
i.e. the empty set.

• At state 1, if controller does not assert p
and next the environment does not
assert q, then the run is in state 4. From
this state, whatever the controller does,
if the environment asserts q, then the
controller loses, as state 6 will be visited
infinitely often.

• A strategy for the controller is to assert p all the time,
therefore the runs will loop in states 1 and 2 until the
environment asserts q. Afterwards the runs will loop in
states 8 and 9, which are non-final.

Solving safety games

• Algorithms for solving safety games are constructed using the so-
called controllable predecessor operator.

30.04.2019 25

Solving safety games with Acacia+

• Let G(A,K) = (FO, FI, F0, T, safe) and set of all counting functions F = FO ∪ FI.

• The controllable predecessor operator is based on the two following
monotonic functions over the superset of the counting functions 2F :
• PreI : 2FO → 2FI , PreO : 2FI → 2FO.

• Let P ⊆ F be a subset of system positions. The safe controllable
predecessors of P are then:

CPre(P) = {F | ∃o ⊆ O, ∀F’, ((Fo),F’) ∈ T ⇒ F’ ∈ P} ∩ safe

30.04.2019 26

Properties of the controllable predecessor - 1

• Let CPre = PreO ◦ PreI . Function CPre is monotonic over the complete
lattice (2FO, ⊆), and so it has a greatest fixed point denoted by CPre∗.

Theorem. The set of states from which Player O (the system) has a winning
strategy in G(A,K) is equal to CPre∗.

• By Theorem for the Reduction to a Safety Game, system has a winning
strategy in G(A,K) iff the initial state F0 ∈ CPre*.

30.04.2019 27

Properties of the controllable predecessor - 2

• F can be partially ordered by F ≼ F´ iff ∀q, F(q) ≤ F´(q).
• If system wins from F´, it can also win from F.

• CPre() preserves downward-closed sets.
• A set S ⊆ F is closed for≼, if ∀F ∈ S ・∀F´ ≼ F ・F´ ∈ S.
• For all closed sets S ⊆ F, the closure of S denoted by ↓S, is equal to S.

• A set S ⊆ F is an antichain if all elements of S are incomparable for ≼.

• The set of maximal elements of S is an antichain, S = {F ∈ S | ∄F´ ∈ S・

F´ ≠ F ∧ F ≼ F}.

• For Acacia+ antichains are a compact and efficient representation to
manipulate closed sets in F.

• Each (downward) set of the fixpoint computation is represented by its
maximal elements.

30.04.2019 28

Symbolic Fixpoint Computation

30.04.2019 29

Symbolic Fixpoint Computation

30.04.2019 30

Symbolic Fixpoint Computation

30.04.2019 31

Symbolic Fixpoint Computation

30.04.2019 32

Symbolic Fixpoint Computation

30.04.2019 33

maximal
elements of
the antichain

Incremental realizability checking

• For checking the existence of a winning strategy for Player O in the
safety game, the following property of UKCWs:

for all K1, K2・ 0 ≤ K1 ≤ K2・ Luc,K1(A) ⊆ Luc,K2(A) ⊆ Luc(A).

30.04.2019 34

Not reasonable to test for unrealizable specifications. Need to reach the
upper bound for K.

Unrealizability Checking

• As a consequence of the determinacy theorem for Borel games:

• φ is unrealizable for the System iff ¬φ is realizable for the
Environment.

• The previous algorithm is adapted to test unrealizability.

• Realizability by Player O of φ is checked, and in parallel realizability by
Player I of ¬φ, incrementing the value of K.

• When one of the two processes stops, it is known if φ is realizable or
not.

• In practice, realizability or unrealizability are obtained for small values
of K.

30.04.2019 35

References

• An Antichain Algorithm for LTL Realizability . http://lit2.ulb.ac.be/acaciaplus/slides/cav09.pdf

Slides of presentation of the following paper at CAV 2009 conference.

• Filiot E., Jin N., Raskin JF. (2009) An Antichain Algorithm for LTL Realizability. In: Bouajjani A.,
Maler O. (eds) Computer Aided Verification. CAV 2009. Lecture Notes in Computer Science, vol
5643. Springer, Berlin, Heidelberg.

• http://lit2.ulb.ac.be/acaciaplus/ - link to the Acacia+ tool

• A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL '89) ACM, NY, USA,
179-190. DOI=http://dx.doi.org/10.1145/75277.75293, 1989

30.04.2019 36

http://lit2.ulb.ac.be/acaciaplus/slides/cav09.pdf
http://lit2.ulb.ac.be/acaciaplus/

