Lecture 3
Property specification in Temporal Logic
CTL*

J.Vain
18.02.2015

Model Checking

MI|=P?
Given

M — model
P — property to be checked

Check if M satisfies P

Model: Kripke Structure (revisited |)

» KS Is a state-transition system that captures
what Is true in a state
what can be viewed as an atomic move
the succession of states

» KS Is a static representation that can be unrolled
to a tree of execution traces, on which temporal
properties are verified.

Representing transition

» In Kripke structure, (s, s’) € R corresponds to
one step of execution of the program.

» Suppose a program has two steps
x = (x+t1) mod 3;
vy = (y+1l) mod 3.
Then R ={R,, R,}
, , X:=(x+1)mod 3\
Ry:(x=(+)mod3) A (y=y) (O (O
R, : (Y = (y+1) mod 3) A (X = X) OY‘:W*“mOd 3>©

Consecutive States

» State space: we can restrict our attention to
{0,1, 2} x{O, 1, 2}

» Question: which logic formula describes the
relation between any two consecutive states?

» Consecutive states can be related by R, or R,.

Consecutive states represented by R; V R,

Representing transition (revisited Il)

» In Kripke structure, a transition (s, S’) € R corresponds to
one step of execution of the program
» Suppose a program P has two steps
x = (x+1) mod 3;
y = (y+1) mod 3;
» For the whole program we have
R=((X=x+t1mod 3) A y=y)v (Y =y+1 mod 3) A X'=X)

» (S, s') that satisfies R means “from s we can get to s’ by
any step of execution of P”

A giant R

» We can compute R for the whole program

then we will know whether two states are one-step
reachable

» Convenient, but globally we loose information:
e.g., the order in which the statements are executed

» Comment:
without order, the disjuncts have no precedence!

Introducing program counter

» In a real machine, the order of execution is
managed by a program counters

» We introduce a virtual variable pc, and assume
the program is everywhere labeled:
In the program: 1,: x := x+1; 1,: y := x+1; 1,: .
U

In the logic: R, : X'=x+1 Ay=y Apc=I, A pc=1l;

I Now we have complete logic representation of
program executions in our model M!

Temporal logic CTL*

» Semantics
KS Is static model of program execution

10

Dynamic model of program execution = unfolding
of the static model

Tree structure: branching time Traces: linear time

Is a formula valid at a given |s a formula valid
node, which represents a along a given path?
subtree?

11

CTL* (Computational Tree Logic)

» Combines branching time and linear time
» Basic Operators

X: neXt
F: Future ()
G: Global (1
U: Until

R: Release

12

CTL*

» State formulas
Express a propery of a state

Path quantifiers:

A - for all paths, E — for some paths
» Path formulas
Expess a property of a path

State quantifiers:
G — for all states (of the path)

F — for some state (of the path)

13

State Formulas (1)

» Atomic properties
p € AP, then p Is a state formula

Examples: x > 0, odd(y)
» Propositional combinations of state formulas

o, VY, @ Ny...

Examples: x > 0V odd(y), req = (AF ack)
0“A” is path quantifier
0“F ack” is a path formula
0“AF ack” is a state formula

14

State Formulas (2)

» Quantifiers A and E construct a state formula
from a path formula
» E@p, where ¢ is a path formula, which expresses
property of a path
E means “there exists”
E ¢ - on some path from this state on ¢ Is true.

» Dual: A ¢
@ IS true on all paths starting from this state.

15

Forms of Path Formulas

» A state formula ¢
@ Is true for the first state of this path

» For path formulas ¢ and vy, the path formulas are:
o VY, oAy
Xo, Fp, Go, oUy, ¢Ry

16

Path Formulas (1): Next-operator

X @, where ¢ Is a path formula

@ Is valid for the suffix of this path (path minus the first
state)

Head of path

States:

@ - ¢is true “~Head of suffix
(D - pcan be either true or false

17

Path Formulas II: Finally-operator

F o
@ Is valid for a suffix of this path (path minus first k
nodes for some k = 0)

Suffix of path

Head of path
@

@ ¢ s false

@ - ¢Istrue
> @ can be either true or false

18

Path Formulas (lll): Globally-operator

» G o
@ iIs valid for head and every suffix of this path

Suffix of path

Head of path

@ - @IS true

19

Path Formulas IV: Until-operator

» Uy
w IS valid on a suffix of the path, before the first
node of which ¢ Is valid on every suffix thereon

@D O
@ @ e

@ - @IS true
@ -y IS true
O -¢ and y are either true or false

20

Path Formulas (V): Release-operator

Ry
* i has to be true until and including the point where ¢
becomes true; if never becomes true, must remain true

forever
(R — O
2) @ @
@ - @IS true \
@ -V Istrue @ never gets true

@ -y can be either
true or false
21

Formal semantics of CTL* (1)

» Notations
M,s|= ¢ Iff @ holds in state s of model M
M, T|= ¢ Iff @ holds along the path min M

T : i-th suffix of 17
m=Sy Sy, ..., thenmt=s,, ...

22

Semantics of CTL* (2)

» Path formulas are interpreted over a path:

M, T|= ¢

M, T|=X ¢
M, T|=F ¢
M, 7T|= Uy

23

Semantics of CTL* (3)

» State formulas are interpreted over a set of states (of
a path)

M,s|=p

M,sS|=— ¢
M,s|=E ¢
M,s|=A g

24

CTL vs. CTL*

» CTL* CTL and LTL have different expressive powers:

» Example:
In CTL there is no formula being equivalent to LTL formula
A(FG p).
In LTL there is no formula equivalent to CTL formula
AG(EF p).
A(FG p) v AG(EF p) is a CTL* formula that cannot be
expressed neither in CTL nor in LTL.

25

CTL

» Quantifiers over paths

A — All: has to hold on all paths starting from the current state.

E — Exists: there exists at least one path starting from the current state where holds.

» In CTL, path formulas can occur only when paired with an A or E , i.e.
one path operator followed by a state operator.

If @ andy are path formulas, then
X o,

F o,
G o,
¢ Uy,

¢ Ry
are path formulas

26

LTL (contains only path formulas)

Form of path formulas:
If p € AP, then p is a path formula
If @ and are path formulas, then
%
oVy
o Ny

¢ Ry
are path formulas.

27

Minimal set of CTL temporal operators

» Transformations used for temporal operators :

28

EF ¢ == E[true U(¢)] (because F ¢ == [true U(¢p)])
AX Q== " EX(—I (0)

AG ¢p== - EF(—~ ¢) == E[true U(p)]

AF ¢p==AftrueU ¢] == 7 EG(— ¢)

AlpUy] == =(E[(= y)U (o V ¥)] V EG(7y))

Summary

» CTL* is a general temporal logic that offers strong
expressive power, more than CTL and LTL separately.

» CTL and LTL are practically useful enough; CTL* helps
us to understand the relations between LTL and CTL.

» Next we will show how to model check CTL formuli on
Kripke structures

29

