
Lecture 3

 Property specification in Temporal Logic

CTL*

J.Vain

18.02.2015

1

Model Checking

2

M |= P ?

Given

 M – model

 P – property to be checked

Check if M satisfies P

Model: Kripke Structure (revisited I)

3

 KS is a state-transition system that captures

 what is true in a state

 what can be viewed as an atomic move

 the succession of states

 KS is a static representation that can be unrolled

to a tree of execution traces, on which temporal

properties are verified.

Representing transition

4

 In Kripke structure, (s, s’) ∈ R corresponds to

one step of execution of the program.

 Suppose a program has two steps
 x := (x+1) mod 3;

 y := (y+1) mod 3.

Then R = {R1, R2}

 R1 : (x’ = (x+1) mod 3) ∧ (y’ = y)

 R2 : (y’ = (y+1) mod 3) ∧ (x’ = x)

x:=(x+1)mod 3

y:=(y+1)mod 3

Consecutive States

5

 State space: we can restrict our attention to

{0, 1, 2}  {0, 1, 2}

 Question: which logic formula describes the

relation between any two consecutive states?

 Consecutive states can be related by R1 or R2.

Consecutive states represented by R1 ∨ R2

6

1,0

2,1

0,0

1,1

2,2

0,2

Representing transition (revisited II)

7

 In Kripke structure, a transition (s, s’) ∈ R corresponds to
one step of execution of the program

 Suppose a program P has two steps
 x := (x+1) mod 3;

 y := (y+1) mod 3;

 For the whole program we have
R= ((x’ = x+1 mod 3) ∧ y’ = y)  ((y’ = y+1 mod 3) ∧ x’=x)

 (s, s’) that satisfies R means “from s we can get to s’ by
any step of execution of P”

A giant R

8

 We can compute R for the whole program

 then we will know whether two states are one-step
reachable

 Convenient, but globally we loose information:
e.g., the order in which the statements are executed

 Comment:
 without order, the disjuncts have no precedence!

Introducing program counter

9

 In a real machine, the order of execution is

managed by a program counters

 We introduce a virtual variable pc, and assume

the program is everywhere labeled:

 In the program: l0: x := x+1; l1: y := x+1; l2: …

 

 In the logic: R1 : x’= x+1 ∧ y’=y ∧ pc = l0 ∧ pc’= l1

! Now we have complete logic representation of

program executions in our model M!

Temporal logic CTL*

10

 Semantics

KS is static model of program execution

S1 S2

S3 S4

Dynamic model of program execution = unfolding

of the static model

11

Tree structure: branching time Traces: linear time

S1

S4

S1

S2

S3

S2 S4

Is a formula valid at a given

node, which represents a

subtree?

Is a formula valid

along a given path?

S1

S4

S1

S2

S3

S1

S2

S1

S2

S1

S2

S1

S4

CTL* (Computational Tree Logic)

12

 Combines branching time and linear time

 Basic Operators

 X: neXt

 F: Future ()

 G: Global ([])

 U: Until

 R: Release

CTL*

13

 State formulas

 Express a propery of a state

 Path quantifiers:

 A – for all paths, E – for some paths

 Path formulas

 Expess a property of a path

 State quantifiers:

 G – for all states (of the path)

 F – for some state (of the path)

State Formulas (1)

14

 Atomic properties
 p ∈ AP, then p is a state formula

 Examples: x > 0, odd(y)

 Propositional combinations of state formulas
 ¬ ,  ∨,  ∧ …

 Examples: x > 0 \/ odd(y), req  (AF ack)

 “A” is path quantifier

 “F ack” is a path formula

 “AF ack” is a state formula

State Formulas (2)

15

 Quantifiers A and E construct a state formula

from a path formula

 E , where  is a path formula, which expresses

property of a path

 E means “there exists”

 E  - on some path from this state on  is true.

 Dual: A 

  is true on all paths starting from this state.

Forms of Path Formulas

16

 A state formula 

  is true for the first state of this path

 For path formulas  and , the path formulas are:

 ¬ ,  ∨,  ∧ 

 X , F, G ,  U,  R

Path Formulas (I): Next-operator

17

X , where  is a path formula

  is valid for the suffix of this path (path minus the first

state)

Head of path

States:

 -  is true

 -  can be either true or false

Suffix of path

Head of suffix

Path Formulas II: Finally-operator

18

F 

 is valid for a suffix of this path (path minus first k
nodes for some k ≥ 0)

 -  is false

 -  is true

 -  can be either true or false

Suffix of path

Head of path

Path Formulas (III): Globally-operator

19

 G 

  is valid for head and every suffix of this path

Suffix of path

Head of path

-  is true

Path Formulas IV: Until-operator

20

  U

  is valid on a suffix of the path, before the first

node of which  is valid on every suffix thereon

-  is true

- is true

- and  are either true or false

Path Formulas (V): Release-operator

21

 R
•  has to be true until and including the point where 

becomes true; if never becomes true, must remain true

forever

1)

 2)

-  is true

- is true

- can be either

true or false

 never gets true

Formal semantics of CTL* (1)

22

 Notations

 M, s |=  iff  holds in state s of model M

 M, π |=  iff  holds along the path π in M

 πi : i-th suffix of π

 π = s0, s1, …, then π1 = s1, …

Semantics of CTL* (2)

23

 Path formulas are interpreted over a path:

 M, π |= 

 M, π |= X 

 M, π |= F 

 M, π |=  U

Semantics of CTL* (3)

24

 State formulas are interpreted over a set of states (of

a path)

 M, s |= p

 M, s |= ¬ 

 M, s |= E 

 M, s |= A 

CTL vs. CTL*

25

 CTL*, CTL and LTL have different expressive powers:

 Example:

 In CTL there is no formula being equivalent to LTL formula

A(FG p).

 In LTL there is no formula equivalent to CTL formula

AG(EF p).

 A(FG p)  AG(EF p) is a CTL* formula that cannot be

expressed neither in CTL nor in LTL.

CTL

26

 Quantifiers over paths

 A – All: has to hold on all paths starting from the current state.

 E – Exists: there exists at least one path starting from the current state where holds.

 In CTL, path formulas can occur only when paired with an A or E , i.e.
one path operator followed by a state operator.

 if  and are path formulas, then

 X ,

 F ,

 G ,

  U,

  R

are path formulas

LTL (contains only path formulas)

27

Form of path formulas:
 If p ∈ AP, then p is a path formula

 If  and  are path formulas, then
 ¬

  ∨

  ∧

 X 

 F 

 G 

  U

  R

are path formulas.

Minimal set of CTL temporal operators

 Transformations used for temporal operators :

 EF  == E[true U()] (because F  == [true U()])

 AX  == ¬ EX(¬ )

 AG  == ¬ EF(¬ ) == ¬ E[true U()]

 AF  == A[true U ] == ¬ EG(¬ )

 A[ U] == ¬(E[(¬ ) U ¬( ∨ )] ∨ EG(¬))

28

Summary

29

 CTL* is a general temporal logic that offers strong

expressive power, more than CTL and LTL separately.

 CTL and LTL are practically useful enough; CTL* helps

us to understand the relations between LTL and CTL.

 Next we will show how to model check CTL formuli on

Kripke structures

