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Model Checking 
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M |= P ? 

Given 

 M – model 

 P – property to be checked  

Check if M satisfies P  



Model: Kripke Structure (revisited I) 
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 KS is a state-transition system that captures 

 what is true in a state 

 what can be viewed as an atomic move 

 the succession of states 

 KS is a static representation that can be unrolled 

to a tree of execution traces, on which temporal 

properties are verified. 



Representing transition 
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 In Kripke structure, (s, s’) ∈ R corresponds to 

one step of execution of the program. 

 Suppose a program has two steps 
 x := (x+1) mod 3; 

 y := (y+1) mod 3. 

Then R = {R1, R2} 

 R1 : (x’ = (x+1) mod 3) ∧ (y’ = y) 

 R2 : (y’ = (y+1) mod 3) ∧ (x’ = x) 

x:=(x+1)mod 3 

y:=(y+1)mod 3 



Consecutive States 
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 State space: we can restrict our attention to  

{0, 1, 2}  {0, 1, 2} 

 

 Question: which logic formula describes the 

relation between any two consecutive states? 

 

 Consecutive states can be related by R1 or R2. 



Consecutive states represented by R1 ∨ R2  
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1,0 

2,1 

0,0 

1,1 

2,2 

0,2 



Representing transition (revisited II) 
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 In Kripke structure, a transition (s, s’) ∈ R corresponds to 
one step of execution of the program 

 Suppose a program P has two steps 
 x := (x+1) mod 3; 

 y := (y+1) mod 3; 

 For the whole program we have 
R= ((x’ = x+1 mod 3) ∧ y’ = y)  ((y’ = y+1 mod 3) ∧ x’=x) 

 

 (s, s’) that satisfies R means “from s we can get to s’ by 
any step of execution of P” 



A giant R 
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 We can compute R for the whole program 

 then we will know whether two states are one-step 
reachable 

 

 Convenient, but globally we loose information: 
e.g., the order in which the statements are executed 

 

 Comment:  
 without order, the disjuncts have no precedence! 



Introducing program counter 
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 In a real machine, the order of execution is 

managed by a program counters 

 We introduce a virtual variable pc, and assume 

the program is everywhere labeled: 

 In the program: l0: x := x+1; l1: y := x+1; l2: … 

     

 In the logic: R1 : x’= x+1 ∧ y’=y ∧ pc = l0 ∧ pc’= l1 
 

 

! Now we have complete logic representation of 

program executions in our model M! 



Temporal logic CTL* 
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 Semantics 

KS is static model of program execution 

S1 S2 

S3 S4 



Dynamic model of program execution = unfolding 

of the static model 
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Tree structure: branching time  Traces: linear time 

 

 

 

 

 

 

 

 

S1 

S4 

S1 

S2 

S3 

S2 S4 

Is a formula valid at a given 

node, which represents a 

subtree?  

Is a formula valid 

along a given path? 

S1 

S4 

S1 

S2 

S3 

S1 

S2 

S1 

S2 

S1 

S2 

S1 

S4 



CTL* (Computational Tree Logic) 
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 Combines branching time and linear time 

 Basic Operators 

 X: neXt 

 F: Future  () 

 G: Global ([]) 

 U: Until 

 R: Release 



CTL* 
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 State formulas 

 Express a propery of a state 

 Path quantifiers:  

 A – for all paths, E – for some paths 

 Path formulas 

 Expess a property of a path 

 State quantifiers:  

 G – for all states (of the path) 

 F – for some state (of the path) 



State Formulas (1) 
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 Atomic properties 
 p ∈ AP, then p is a state formula 

 Examples: x > 0, odd(y) 

 Propositional combinations of state formulas 
 ¬ ,    ∨,    ∧ … 

 Examples: x > 0 \/ odd(y), req  (AF ack) 

 “A” is path quantifier 

 “F ack” is a path formula 

 “AF ack” is a state formula 



State Formulas (2) 
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 Quantifiers A and E construct a state formula 

from a path formula 

 E , where   is a path formula, which expresses 

property of a path 

 E means “there exists” 

 E  - on some path from this state on  is true. 

 Dual: A  

  is true on all paths starting from this state. 



Forms of Path Formulas 
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 A state formula  

   is true for the first state of this path 
 

 For path formulas  and , the path formulas are: 

 ¬ ,     ∨,     ∧  

 X ,    F,    G ,     U,     R 



Path Formulas (I): Next-operator 
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X , where  is a path formula 

  is valid for the suffix of this path (path minus the first 

state) 

 

Head of path 

 

 

 

States: 

  -  is true  

  -  can be either true or false 

Suffix of path 

Head of suffix 



Path Formulas II: Finally-operator 
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F  

  is valid for a suffix of this path (path minus first k 
nodes for some k ≥ 0) 

 

 

 

 

 -  is false 

     -  is true  

 -  can be either true or false 

Suffix of path 

Head of path 



Path Formulas (III): Globally-operator 
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 G  

  is valid for head and every suffix of this path 

 

 

 

 

 

Suffix of path 

Head of path 

-  is true  



Path Formulas IV: Until-operator 

20 

  U 

  is valid on a suffix of the path, before the first 

node of which  is valid on every suffix thereon 

 

 

-  is true  

-  is true 

-  and  are either true or false 

 



Path Formulas (V): Release-operator 
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 R 
•   has to be true until and including the point where  

becomes true; if never becomes true, must remain true 

forever  

1) 
   

   2) 

-  is true  

-  is true 

- can be either 

true or false 

  never gets true 



Formal semantics of CTL* (1) 
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 Notations 

 M, s |=     iff   holds in state s of model M 

 M, π |=    iff   holds along the path π in M 

 πi : i-th suffix of π 

  π = s0, s1, …, then π1 = s1, … 

 



Semantics of CTL* (2) 
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 Path formulas are interpreted over a path: 

 M, π |=  

 M, π |= X  

 M, π |= F  

 M, π |=  U 

 



Semantics of CTL* (3) 
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 State formulas are interpreted over a set of states (of 

a path) 

 M, s |= p 

 M, s |= ¬  

 M, s |= E  

 M, s |= A  

 



CTL  vs. CTL* 
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 CTL*, CTL and LTL have different expressive powers: 

 Example:  

 In CTL there is no formula being equivalent to LTL formula 

A(FG p).  

 In LTL there is no formula equivalent to CTL formula 

AG(EF p). 

 A(FG p)  AG(EF p) is a CTL* formula that cannot be 

expressed neither in CTL nor in LTL.  



CTL 
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 Quantifiers over paths 

 A  – All: has to hold on all paths starting from the current state. 

 E  – Exists: there exists at least one path starting from the current state where holds. 

 

 In CTL, path formulas can occur only when paired with an A or E , i.e. 
one path operator followed by a state operator. 

 if  and are path formulas, then  

 X ,  

 F , 

 G ,  

  U,  

  R   

are path formulas 



LTL (contains only path formulas) 
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Form of path formulas: 
 If p ∈ AP, then p is a path formula 

 If  and  are path formulas, then  
 ¬ 

  ∨ 

  ∧ 

 X  

 F  

 G  

  U  

  R  

are path formulas. 



Minimal set of CTL temporal operators 

 

 Transformations used for temporal operators : 

 EF  == E[true U( )]      (because F  == [true U( )] ) 

 AX  == ¬ EX(¬  ) 

 AG  == ¬ EF(¬  ) == ¬ E[true U( )] 

 AF  == A[true U  ] == ¬ EG(¬  ) 

 A[ U] == ¬( E[(¬ ) U ¬( ∨ )] ∨ EG(¬) ) 
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Summary 
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 CTL* is a general temporal logic that offers strong 

expressive power, more than CTL and LTL separately. 

 

 CTL and LTL are practically useful enough; CTL* helps 

us to understand the relations between LTL and CTL. 

 

 Next we will show how to model check CTL formuli on 

Kripke structures 


