

Real-time Operating Systems and
Systems Programming

Compilation and Utilities
Virtual Memory

Compilation steps

● Source code

● Preprocessing
● Compiler

● Assembly code

● Assembler
● Object code

● Linker

Why is Awareness Needed?

● Error message source discovery
● Assembly code checking
● Makefile creation

GCC options

● Preprocess only: -E
● Compile only: -S (gives assembly code)
● Skip linking: -c

Example

Te olete C loengus
11:41:33

Page fault

 As there is more virtual memory than real
memory, we must swap pages between "real"
and "backup" memory

 It's called paging
 Page fault: an attempt to read memory which is

not in the RAM
 When page fault happens, the couple of

milliseconds needed for memory access
suddenly take a far greater amount of time

 Hard disks become noisy

Te olete C loengus
11:41:33

How to get memory

 There are two ways of getting memory
– upon starting your program (exec) when your

program gets its memory space and is allocated
space in there for its constants, code text and stack
space

– in your program:
● auto variables
● malloc
● mmap: map a file into virtual memory

– fork: copy on write
 When program stops, its memory space collapses

Te olete C loengus
11:41:33

Tracing memory

 You can trace memory allocation using

 Use environment variable named MALLOC_TRACE to
specify the file which will store the statistics about
memory allocation and release

 The first activates, the second deactivates trace
 GNU specific: mcheck.h provides it
 Result is not human-readable – use a command:

void mtrace(void);
void muntrace(void);

mtrace progamname mtrace-log

Valgrind

● Memory debugging and profiling tool
● Makes your program really slow, but documents

it while it runs
● Usage:

valgrind --tool=memcheck prog args
● Tools: memcheck, callgrind, cachegrind
● For callgrind run callgrind_annotate

Te olete C loengus
11:41:33

mmap()

 mmap() maps a file into virtual memory
(or creates an anonymous mapping)

 Sometimes useful:
– We can read only parts of file which we use
– mmap() lets you write changes back to disk
– we can open files larger than mem+swap

– Parameters: desired start of mapping, length,
protection data, management data, file
descriptor and file offset

void * mmap (void *address, size_t length, int protect,
 int flags, int filedes, off_t offset)

Te olete C loengus
11:41:33

mmap() parameters
 prot: PROT_READ, PROT_WRITE, PROT_EXEC bits

– depending on system: write is usually read or write
protected files can not be written when PROT_READ
is missing

 flags: refine mapping:
– MAP_PRIVATE: don't write changes into file

– MAP_SHARED: changes visible in file and other
processes

– MAP_FIXED: get this address or fail

– MAP_ANONYMOUS: don't open a file (some systems
expand heap using this trick)

Te olete C loengus
11:41:33

mmap.c Example

Te olete C loengus
11:41:33

munmap() & msync() &
madvise()

 munmap(): removes mapped space starting from
an addressto given address (may remove several);
can handle unmapped segments.

 msync(): write mapping to file from given point
 madvise(): suggests how you want to use an

address region: for random access, sequental
access; will we need it all eventually or is the
contents becoming irrelevant and when anything
happens to it, the client won't leave the room in
screaming agony.

Makefiles

● Compilation must be an atomic process
– Otherwise the programmer debugs larger chunks

● Save time on compiling large projects
● Help with modularity
● Compile unfamiliar programs without thinking

Makefile layout

● File uses tabs instead of spaces
● Named either "makefile" or "Makefile"

target: prerequisite1 prerequisite2
commmand

myprog: myprog.c myprog.h
gcc myprog.c -o myprog

Laying out a program

● Modules:
– Spread the program over several .c files

– Use .h files for function prototypes and data

● For .h:
#ifndef _header_h_
#define _header_h_
...
#endif

.h files

● Describe the "interface"
● Function prototypes
● Data types and structures declared
● const and #define
● #includes for other headers

Te olete C loengus
11:41:33

Page fault

 As there is more virtual memory than real
memory, we must swap pages between "real"
and "backup" memory

 It's called paging
 Page fault: an attempt to read memory which is

not in the RAM
 When page fault happens, the couple of

milliseconds needed for memory access
suddenly take a far greater amount of time

 Hard disks become noisy

Te olete C loengus
11:41:33

How to get memory

 There are two ways of getting memory
– upon starting your program (exec) when your

program gets its memory space and is allocated
space in there for its constants, code text and stack
space

– in your program:
● auto variables
● malloc
● mmap: map a file into virtual memory

– fork: copy on write
 When program stops, its memory space collapses

Te olete C loengus
11:41:33

Tracing memory

 You can trace memory allocation using

 Use environment variable named MALLOC_TRACE to
specify the file which will store the statistics about
memory allocation and release

 The first activates, the second deactivates trace
 GNU specific: mcheck.h provides it
 Result is not human-readable – use a command:

void mtrace(void);
void muntrace(void);

mtrace progamname mtrace-log

Valgrind

● Memory debugging and profiling tool
● Makes your program really slow, but documents

it while it runs
● Usage:

valgrind --tool=memcheck prog args
● Tools: memcheck, callgrind, cachegrind
● For callgrind run callgrind_annotate

Te olete C loengus
11:41:33

mmap()

 mmap() maps a file into virtual memory
(or creates an anonymous mapping)

 Sometimes useful:
– We can read only parts of file which we use
– mmap() lets you write changes back to disk
– we can open files larger than mem+swap

– Parameters: desired start of mapping, length,
protection data, management data, file
descriptor and file offset

void * mmap (void *address, size_t length, int protect,
 int flags, int filedes, off_t offset)

Te olete C loengus
11:41:33

mmap() parameters
 prot: PROT_READ, PROT_WRITE, PROT_EXEC bits

– depending on system: write is usually read or write
protected files can not be written when PROT_READ
is missing

 flags: refine mapping:
– MAP_PRIVATE: don't write changes into file

– MAP_SHARED: changes visible in file and other
processes

– MAP_FIXED: get this address or fail

– MAP_ANONYMOUS: don't open a file (some systems
expand heap using this trick)

Te olete C loengus
11:41:33

mmap.c Example

Te olete C loengus
11:41:33

munmap() & msync() &
madvise()

 munmap(): removes mapped space starting from
an addressto given address (may remove several);
can handle unmapped segments.

 msync(): write mapping to file from given point
 madvise(): suggests how you want to use an

address region: for random access, sequental
access; will we need it all eventually or is the
contents becoming irrelevant and when anything
happens to it, the client won't leave the room in
screaming agony.

Makefile with separate linking

● Simple makefile which compiles in several
steps

● Note first and last directives
Makefile for the sample
sample: sample.o my_math.o

gcc –o sample sample.o my_math.o
sample.o: sample.c my_math.h

gcc –c sample.c
my_math.o: my_math.c my_math.h

gcc –c my_math.c
clean:

rm sample *.o core

Makefile (2)

● Make checks upon running the command
whether it needs to compile anything by looking
at file dates and their dependencies

● So it tries to only compile the minimal set

clean Convention

● Makefiles often specify (and programmers
expect) a way to clean out the temporary files

make clean
clears the files if specified

● If for some reason you need to recompile and
make does not want to:
 touch filename.h

Implicit rules

● Make can compile when some rules are omitted
● It "knows" how to compile from .c to .o, for

example, if the names match and only target
and prerequisites are present

Implicit Rule Example
objects = main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

edit : $(objects)
 cc -o edit $(objects)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

Note special .PHONY keyword here!!!
.PHONY : clean
clean :
 rm edit $(objects)

.PHONY

● Make clean does not have prerequisites and
thus will always run

● If someone makes a file named "clean" into
directory, cleaning will fail

● .PHONY tells that we are dealing with a
command, not a target file

Macros

● You can define macros in a makefile to avoid
repeating yourself

● Macros are defined as:
name = value

● Used as:
$(name) or
${name}

Multiple directories

● Sometimes you need to split program modules
into directories

● Every module has its own makefile
● Program has a directory for every module and

one for all of the .h files
● Main Makefile creates the program
● Makefiles in modules make the corresponding

object files

Directory Example

● C program uses Stack module and Queue
module and has a main.

● Program has 7 files: StackTypes.h,
StackInterface.h, QueueTypes.h,
QueueInterface.h, StackImplementation.c,
QueueImplementation.c and Main.c

● The target is a program in a directory which
contains subdirectories Stack, Queue and
Include (containing every .h file)

Stack dir

● StackImplementation.c and the makefile:
export: StackImplementation.o

StackImplementation.o: StackImplementation.c \
 ../Include/StackTypes.h \
 ../Include/StackInterface.h
 gcc -I../Include -c StackImplementation.c
substitute a print command of your choice for lpr below
print:
 lpr StackImplementation.c
clean:
 rm -f *.o

Queue dir

● QueueImplementation.c and the makefile:
 export: QueueImplementation.o

QueueImplementation.o: QueueImplementation.c \
 ../Include/QueueTypes.h \
 ../Include/QueueInterface.h
 gcc -I../Include -c QueueImplementation.c
substitute a print command of your choice for lpr
below

print:
 lpr QueueImplementation.c
clean:
 rm -f *.o

Notes

● -I (capital i) tells where the library includes can
be found; use commas for multiple; don't use
spaces

● This enables us to gather .h files in one location
for ease of reference

● The \ symbol before line-end escapes it.

Main directory

● Main includes main.c and makefile:
export: Main
Main: Main.o StackDir QueueDir
 gcc -o Main Main.o ../Stack/StackImplementation.o \
 ../Queue/QueueImplementation.o
Main.o: Main.c ../Include/*.h
 gcc -I../Include -c Main.c
StackDir:
 (cd ../Stack; make export)
QueueDir:
 (cd ../Queue; make export)

#continues

Main directory (2)

print:
 lpr Main.c
printall:
 lpr Main.c
 (cd ../Stack; make print)
 (cd ../Queue; make print)

clean:
 rm -f *.o Main core
cleanall:
 rm -f *.o Main core
 (cd ../Stack; make clean)
 (cd ../Queue; make clean)

Notes

● Unix command sequence in brackets makes
them run as a subprocess

● So the directory changes apply, but only for the
subprocess itself

Let's Add Macros

CC = gcc
HDIR = ../Include
INCPATH = -I$(HDIR)
DEF = $(HDIR)/StackTypes.h $
(HDIR)/StackInterface.h

SOURCE = StackImplementation
export: $(SOURCE).o

$(SOURCE).o: $(SOURCE).c $(DEF)
 $(CC) $(INCPATH) -c $(SOURCE).c
print:
 lpr $(SOURCE).c
clean:

GNU Make

● GNU Make has a ton of features such as:
– Control structures and conditional clauses, cycles

– Simple text modifying features

– Automatic variables referring to target/source

● Gmake manual:
http://www.gnu.org/software/make/manual/make.html

http://www.gnu.org/software/make/manual/make.html

GNU autotools

● http://www.sourceware.org/autobook/
● Makefile does not work well with portable

applications for different Unixes
● Thus automake and autoconf are used
● Programmer writes Makefile.am and configure.in

files
● Those are changed to configure and Makefile.in
● Configure makes Makefile using the latter

http://www.sourceware.org/autobook/

Makefile.am

● Describes program and its requirements on a
general level

Makefile.am -- Process this file with automake to produce
Makefile.in
bin_PROGRAMS = foonly
foonly_SOURCES = foo.c foo.h nly.c scanner.l parser.y
foonly_LDADD = @LEXLIB@

configure.in

● Like this:
dnl Process this file with autoconf to produce a configure
script.

AC_PREREQ(2.59)

AC_INIT([foonly], [2.0], [gary@gnu.org])

AM_INIT_AUTOMAKE([1.9 foreign])

AC_PROG_CC
AM_PROG_LEX
AC_PROG_YACC

AC_CONFIG_FILES([Makefile])
AC_OUTPUT

Usage of autotools

● Usually:

● Distribution:

creates xxx.tar.gz with readied configuration

aclocal
autoconf
automake
./configure
make
make install

make dist

Don't forget

● gdb
– and (somewhat) graphical ddd

● hexdump
● objdump

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

