
  

Real-time Operating Systems and 
Systems Programming

Compilation and Utilities
Virtual Memory



  

Compilation steps

● Source code

● Preprocessing
● Compiler

● Assembly code

● Assembler
● Object code

● Linker



  

Why is Awareness Needed?

● Error message source discovery
● Assembly code checking
● Makefile creation



  

GCC options

● Preprocess only: -E
● Compile only: -S (gives assembly code)
● Skip linking: -c

Example
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Page fault

 As there is more virtual memory than real 
memory, we must swap pages between "real" 
and "backup" memory

 It's called paging
 Page fault: an attempt to read memory which is 

not in the RAM
 When page fault happens, the couple of 

milliseconds needed for memory access 
suddenly take a far greater amount of time

 Hard disks become noisy
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How to get memory

 There are two ways of getting memory
– upon starting your program (exec) when your 

program gets its memory space and is allocated 
space in there for its constants, code text and stack 
space

– in your program:
● auto variables
● malloc
● mmap: map a file into virtual memory

– fork: copy on write
 When program stops, its memory space collapses
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Tracing memory

 You can trace memory allocation using

 Use environment variable named MALLOC_TRACE to 
specify the file which will store the statistics about 
memory allocation and release

 The first activates, the second deactivates trace
 GNU specific: mcheck.h provides it
 Result is not human-readable – use a command:

void mtrace(void);
void muntrace(void);

mtrace progamname mtrace-log



  

Valgrind

● Memory debugging and profiling tool
● Makes your program really slow, but documents 

it while it runs
● Usage:

valgrind --tool=memcheck prog args
● Tools: memcheck, callgrind, cachegrind
● For callgrind run callgrind_annotate
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mmap()

 mmap() maps a file into virtual memory 
(or creates an anonymous mapping)

 Sometimes useful:
– We can read only parts of file which we use
– mmap() lets you write changes back to disk
– we can open files larger than mem+swap

– Parameters: desired start of mapping, length, 
protection data, management data, file 
descriptor and file offset

void * mmap (void *address, size_t length, int protect,
               int flags, int filedes, off_t offset)
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mmap() parameters
 prot: PROT_READ, PROT_WRITE, PROT_EXEC bits

– depending on system: write is usually read or write 
protected files can not be written when PROT_READ 
is missing

 flags: refine mapping:
– MAP_PRIVATE: don't write changes into file

– MAP_SHARED: changes visible in file and other 
processes

– MAP_FIXED: get this address or fail

– MAP_ANONYMOUS: don't open a file (some systems 
expand heap using this trick)
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mmap.c Example
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munmap() & msync() & 
madvise()

 munmap(): removes mapped space starting from 
an addressto given address (may remove several); 
can handle unmapped segments.

 msync(): write mapping to file from given point
 madvise(): suggests how you want to use an 

address region: for random access, sequental 
access; will we need it all eventually or is the 
contents becoming irrelevant and when anything 
happens to it, the client won't leave the room in 
screaming agony.



  

Makefiles

● Compilation must be an atomic process
– Otherwise the programmer debugs larger chunks

● Save time on compiling large projects
● Help with modularity
● Compile unfamiliar programs without thinking



  

Makefile layout

● File uses tabs instead of spaces
● Named either "makefile" or "Makefile"

target: prerequisite1 prerequisite2
commmand

myprog: myprog.c myprog.h
gcc myprog.c -o myprog



  

Laying out a program

● Modules:
– Spread the program over several .c files

– Use .h files for function prototypes and data

● For .h:
#ifndef _header_h_
#define _header_h_
...
#endif



  

.h files

● Describe the "interface"
● Function prototypes
● Data types and structures declared
● const and #define
● #includes for other headers
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Makefile with separate linking

● Simple makefile which compiles in several 
steps

● Note first and last directives
# Makefile for the sample
sample:  sample.o  my_math.o

gcc –o sample sample.o my_math.o
sample.o:  sample.c  my_math.h

gcc –c sample.c
my_math.o:  my_math.c my_math.h

gcc –c my_math.c
clean:

rm sample *.o core



  

Makefile (2)

● Make checks upon running the command 
whether it needs to compile anything by looking 
at file dates and their dependencies

● So it tries to only compile the minimal set



  

clean Convention

● Makefiles often specify (and programmers 
expect) a way to clean out the temporary files

make clean
clears the files if specified

● If for some reason you need to recompile and 
make does not want to:
  touch filename.h



  

Implicit rules

● Make can compile when some rules are omitted
● It "knows" how to compile from .c to .o, for 

example, if the names match and only target 
and prerequisites are present



  

Implicit Rule Example
objects = main.o kbd.o command.o display.o \
          insert.o search.o files.o utils.o

edit : $(objects)
        cc -o edit $(objects)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

# Note special .PHONY keyword here!!! 
.PHONY : clean
clean :
        rm edit $(objects)



  

.PHONY

● Make clean does not have prerequisites and 
thus will always run

● If someone makes a file named "clean" into 
directory, cleaning will fail

● .PHONY tells that we are dealing with a 
command, not a target file



  

Macros

● You can define macros in a makefile to avoid 
repeating yourself

● Macros are defined as:
name = value

● Used as:
$(name) or
${name}



  

Multiple directories

● Sometimes you need to split program modules 
into directories

● Every module has its own makefile
● Program has a directory for every module and 

one for all of the .h files
● Main Makefile creates the program
● Makefiles in modules make the corresponding 

object files



  

Directory Example

● C program uses Stack module and Queue 
module and has a main.

● Program has 7 files: StackTypes.h, 
StackInterface.h, QueueTypes.h, 
QueueInterface.h, StackImplementation.c, 
QueueImplementation.c and Main.c

● The target is a program in a directory which 
contains subdirectories Stack, Queue and 
Include (containing every .h file)



  

Stack dir

● StackImplementation.c and the makefile:
export: StackImplementation.o

StackImplementation.o: StackImplementation.c \
                    ../Include/StackTypes.h \
                    ../Include/StackInterface.h
        gcc -I../Include -c StackImplementation.c
# substitute a print command of your choice for lpr below
print:
        lpr StackImplementation.c
clean:
        rm -f *.o



  

Queue dir

● QueueImplementation.c and the makefile: 
 export: QueueImplementation.o

QueueImplementation.o: QueueImplementation.c \
                       ../Include/QueueTypes.h \
                       ../Include/QueueInterface.h
        gcc -I../Include -c QueueImplementation.c
# substitute a print command of your choice for lpr 
below

print:
        lpr QueueImplementation.c
clean:
        rm -f *.o



  

Notes

● -I (capital i) tells where the library includes can 
be found; use commas for multiple; don't use 
spaces

● This enables us to gather .h files in one location 
for ease of reference

● The \ symbol before line-end escapes it.



  

Main directory

● Main includes main.c and makefile:
export: Main
Main: Main.o StackDir QueueDir
        gcc -o Main Main.o ../Stack/StackImplementation.o \
                           ../Queue/QueueImplementation.o
Main.o: Main.c ../Include/*.h
        gcc -I../Include -c Main.c
StackDir:
        (cd ../Stack; make export)
QueueDir:
         (cd ../Queue; make export)

#continues



  

Main directory (2)

print:
        lpr Main.c
printall:
        lpr Main.c
        (cd ../Stack; make print)
        (cd ../Queue; make print)

clean:
        rm -f *.o  Main  core
cleanall:
        rm -f *.o  Main  core
        (cd ../Stack; make clean)
        (cd ../Queue; make clean)



  

Notes

● Unix command sequence in brackets makes 
them run as a subprocess

● So the directory changes apply, but only for the 
subprocess itself



  

Let's Add Macros

CC = gcc
HDIR = ../Include
INCPATH = -I$(HDIR)
DEF =  $(HDIR)/StackTypes.h  $
(HDIR)/StackInterface.h

SOURCE = StackImplementation 
export:  $(SOURCE).o

$(SOURCE).o:  $(SOURCE).c  $(DEF)
            $(CC)  $(INCPATH)  -c  $(SOURCE).c
print:
            lpr  $(SOURCE).c
clean:



  

GNU Make

● GNU Make has a ton of features such as:
– Control structures and conditional clauses, cycles

– Simple text modifying features

– Automatic variables referring to target/source

● Gmake manual:
http://www.gnu.org/software/make/manual/make.html

http://www.gnu.org/software/make/manual/make.html


  

GNU autotools

● http://www.sourceware.org/autobook/
● Makefile does not work well with portable 

applications for different Unixes
● Thus automake and autoconf are used
● Programmer writes Makefile.am and configure.in 

files
● Those are changed to configure and Makefile.in
● Configure makes Makefile using the latter

http://www.sourceware.org/autobook/


  

Makefile.am

● Describes program and its requirements on a 
general level

## Makefile.am -- Process this file with automake to produce 
Makefile.in
bin_PROGRAMS = foonly
foonly_SOURCES = foo.c foo.h nly.c scanner.l parser.y
foonly_LDADD = @LEXLIB@



  

configure.in

● Like this:
dnl Process this file with autoconf to produce a configure 
script.

AC_PREREQ(2.59)

AC_INIT([foonly], [2.0], [gary@gnu.org])

AM_INIT_AUTOMAKE([1.9 foreign])

AC_PROG_CC
AM_PROG_LEX
AC_PROG_YACC

AC_CONFIG_FILES([Makefile])
AC_OUTPUT



  

Usage of autotools

● Usually:

● Distribution:

creates xxx.tar.gz with readied configuration

aclocal
autoconf
automake
./configure
make
make install

make dist



  

Don't forget

● gdb
– and (somewhat) graphical ddd

● hexdump
● objdump
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