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Fractional metrics

In many cases metric (or distance) function belongs to the class of
Lp norms

S(X̄Ȳ ) =
( d∑
i=1

| xi − yi |p
) 1

p

Lp norms do not behave in the same way in terms of the impact of
irrelevant features or the distance contrast.
Fractional metrics where p ∈ (0, 1) is one of the possible solutions.
Rule of thumb, larger the dimensionality, smaller the value p.



Match-based Similarity Computation

I How to select (in practice) relevant features for the similarity
computations?

I For high dimensional data: impact of the noisy variation along
individual attributes needs to be de-emphasized while
counting the cumulative match across many dimensions.

I One of the methods is :proximity thresholding in a
dimensionality-sensitive way.

I Perform discretization into kd equidepth buckets. Each
dimension is divided into kd equidepth buckets, containing
1/kd records. kd ∝ d (proportional).

I Definition
Two records of dimension d X̄ and Ȳ are said to be in proximity
on dimension i if xi and yi belong to the same bucket.



Match-based Similarity Computation

I The subset of dimensions where X̄ and Ȳ map to the same
bucket is referred as the proximity set, and denoted
S(X̄, Ȳ , kd).

I Let mi and ni be the upper and lower bounds of the bucket in
dimension i

I Similarity is defined as follows.

I

Sp(X̄, Ȳ , kd) =

[ ∑
i∈S(X̄,Ȳ ,kd)

(
1− | xi − yi |

mi − ni

)p
] 1

p



Impact of Data Distribution

Mahalanobis distance:

SM =

√(
X̄ − Ȳ

)
Σ−1

(
X̄ − Ȳ

)T
Do not confuse Σ which is covariance matrix with the

∑
which is

summation symbol ;)



Nonlinear distributions ISOMAP
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I Let the data contain nonlinear distributions of arbitrary shape.

I Consider points A -blue, B - red and C - green. On the basis
of the Euclidian distance A and B are the closest.

I According to the geodesic distance, where only small ”jumps”
are allowed A and B are not the closest.



Nonlinear distributions ISOMAP

I Compute the k-nearest neighbors of each point. Construct a
weighted graph G with nodes representing data points, and
edge weights (costs) representing distances of these k-nearest
neighbors.

I For any pair of points X and Y , find S(X,Y ) as the shortest
path between the corresponding nodes in G.



Impact of local data distributions

I Distribution of the data varies significantly with locality.
I Density
I Orientation

I Shared Nearest-Neighbor Similarity addresses the first
problem.

I Generic Methods:
I Partition the data into a set of local regions.
I For any pair of objects, determine the most relevant region for

the pair, and compute the pairwise distances using the local
statistics of that region. For example, the local Mahalanobis
distance may be used in each local region.



Categorical data

I

S(X̄Ȳ ) =

d∑
i=1

s(xi, yi).

I The choice of similarity function s(xi, yi) defines the overall
similarity function S

I The simplest possible function is s(xi, yi) = I(xi, yi)
I Inverse occurrence frequency

s(xi, yi) =


1

pk(xi)2
if xi = yi

0 otherwise

here pk(x) is the fraction of records where xi = yi
I Goodall measure

s(xi, yi) =

{
1− pk(xi)

2 if xi = yi

0 otherwise



Mixed Quantitative and Categorical Data

d(x, y) = λdq(xq, yq) + (1− λ)(dc(xc, yc))

here index q denotes quantitative and c categorical data.

I how to choose λ?

I data normalization ?



Text Similarity Measures

I Levenshtein or SED distance. SED - minimal number of single
-charter edits required to change one string into another. Edit
operations are as follows:

I insertions
I deletions
I substitutions

I SED(delta, delata)=1 delete ”a” or SED(kitten,sitting)=3 :
substitute ”k” with ”s”,substitute ”e” with ”i”, insert ”g”.

I Hamming distance Similar to Levenshtein but with
substitution operation only. Frequently used with categorical
and binary data.



Text Similarity Measures

I Text may be considered as the multidimensional data if it
treated as the bag of words. Lexicon can be treated as the full
set of attributes and word frequencies as the quantitative
attributes.

I Many attributes would take the value ”0”, Lp norms do not
adjust well to the different lengthes of the documents.

I The cosine measure computes the angle between two
documents. Let X̄ = (x1, . . . , xd) and Ȳ = (y1, . . . , yd) will
be two documents on a lexicon of size d. Then cosine
measure is defines as follows:

cos
(
X̄, Ȳ

)
=

d∑
i=1

xi · yi

d∑
i=1

x2
i ·

d∑
i=1

y2
i

This measure uses the raw frequencies between attributes.



Text Similarity Measures
I If two documents match in a uncommon word it is more

indicative than if two documents match on a word that occurs
very commonly.

I The inverse document frequency is defined as

idi = log(n/ni).

I Sometimes a dumping function f(·) which is either logarithm
or square root is used.

I The normalized frequency for the ith word is defined as follows

h(xi) = f(xi) · idi
I Combined together with the cosine distance this leads

cos
(
X̄, Ȳ

)
=

d∑
i=1

h(xi) · h(yi)

d∑
i=1

h(xi)
2 ·

d∑
i=1

h(yi)
2



Binary and Sparse Data

I Already known to you Jaccard distance may be rewritten in
the following way

J
(
X̄, Ȳ

)
=

d∑
i=1

h(xi) · h(yi)

d∑
i=1

h(xi)
2 +

d∑
i=1

h(yi)
2 −

d∑
i=1

h(xi) · h(yi)

I Let X̄, Ȳ are binary representations of the two sets HX and
HY respectively. Then

J
(
X̄, Ȳ

)
=

d∑
i=1

xi · yi

d∑
i=1

x2
i +

d∑
i=1

y2
i −

d∑
i=1

xi · yi



Temporal Similarity Measures

I Temporal data contain a single contextual attribute
representing time and one or more behavioral attributes that
measure the properties varying along a particular time period.

I Temporal data shares some similarities with discrete sequences
strings.

I Temporal data is usually represented by continuous or discrete
time-series.

I Time-series similarity measures
I Behavioral attribute scaling and translation.
I Temporal (contextual) attribute translation.
I Temporal (contextual) attribute scaling.
I Noncontiguity in matching.

I Lp norms may be used to measure similarities of time series of
equal length. But can not address distortions on temporal
(contextual) attributes.



Dynamic Time Wrapping DTW

I DTW stretches the series along the time axis in a varying (or
dynamic) way over different portions to enable more effective
matching.

I Unlike Lp norms it allows many-to-one mappings. In turn
allows to artificial creation of two equal length series.

I Temporal data is usually represented by continuous or discrete
time-series.



DTW Example

I Consider L1 Manhattan metric computed on the first n elements of
two time series X̄ = (x1, . . . xn) and Ȳ = (y1, . . . yn).

I The value of Manhattan metric may be written recursively as follwos

MX̄i, Ȳi) =| xi − yi | +M(X̄i−1, ¯Yi−1)

I Let DTW will be optimal distance between the first i and the first j
elements of two time series X̄ = (x1, . . . xn) and Ȳ = (y1, . . . ym).
Then DTW is defines as follows

DTW (i, j) = s(xi, yi)+min


DTW (i, j − 1) repeat xi

DTW (i− 1, j) repeat yi

DTW (i− 1, j − 1) repeat neither



Window-based methods

I Dropped readings (observation points) may cause a gap in the
matching.

I If two sequences have contiguous matching segments, they
should be considered similar.

I Let X̄ and Ȳ are two series, and let X̄1, . . . , X̄r and
Ȳ1, . . . , Ȳr be temporally ordered and nonoverlapping windows
extracted from the respective series. Then overall similarity
function may be defines as follows

S(X̄Ȳ ) =

r∑
i=1

M(X̄rȲr)

where M(X̄rȲr) is some suitable matching function.



Discrete Sequence Similarity Measures: Edit distance

I Let us consider Levenshtein distance in a more detailed way.

I Edit distance defines the similarity between the two strings in
terms of cost (effort) of transforming one sequence into
another.

I Let X̄ =
(
x1, . . . , xm

)
, Ȳ =

(
y1, . . . , yn

)
be the two

sequences and let the edit is performed to transform X into Y .

I the optimal matching is defined as follwos

E(i, j) = min


E(i− 1, j) + CD

E(i− 1, j) + CI

E(i− 1, j − 1) + Ii,j · CR

where CD denotes deletion cost, CI -insertion cost and CR

-replacement cost.



Discrete Sequence Similarity Measures: Longest Common
Subsequence

I Optimal matching based on the longest common subsequence LCSS
is defined as follows.

LCSS(i, j) =

max


LCSS(i− 1, j − 1) if xi = yi

LCSS(i− 1, j) otherwise no match on xi

LCSS(i, j − 1) otherwise no match on yi



Graph Similarity Measures: Similarity between two nodes

I Let G = (N,A) is undeirected network with node set N and
edge set A.

I Assume that either weights are associated with nodes or costs
are associated with edges. (Distance funcstions are usually
work with costs and similarity functions -with weights).

I Heuristic kernel functions K(x) = ex
2/t2 are used to convert

between costs and weights.

I Nodes similarity is based on the principal of homophily

I Structural Distance-Based Measure

I Random Walk-Based Similarity



Graph Similarity Measures: Similarity between two graphs

I Maximum common subgraph distance

I Substructure-based similarity

I Graph-edit distance

I Graph kernels



Supervised Similarity Functions

S =
{(
Oi,Oj

)
: Oiis similarOj

}
D =

{(
Oi,Oj

)
: Oiis dissimilarOj

}
Distance function

fi
(
Oi,OjΘ

)
=

{
0 if

(
Oi,Oj)

)
∈ S

1 if
(
Oi,Oj)

)
∈ D

It may be optimized with respect to the following error function

E =
∑(

Oi,Oj

)
∈S

(
fi
(
Oi,OjΘ

)
− 0
)2

+
∑(

Oi,Oj

)
∈D

(
fi
(
Oi,OjΘ

)
− 1
)2


